
Kernels from Random Partitions

Àlex Batlle Casellas, Aleix Torres i Camps

March 19, 2022

Abstract

We present the Random Partition Kernels, a family of kernels developed in [1] that come from
random partitions. We explain the background for these kernels and present the methodology to
construct them, and we propose novel approaches using Locality Sensitive Hashing and Markov
processes. We show how this kernels offer an improvement for some algorithms in a variety of
tasks.

1 Introduction

Kernel methods are a hit in machine learning.
Among other things, their utility is to twist
linear algorithms into strongly non-linear algo-
rithms, giving them a powerful approach to data
that has other kinds of structures that are non-
linear. In general, they are also very useful in
unsupervised learning tasks, since they do not
need a target variable.

Despite there is large variety of kernels, in
practice the most used ones are Linear, Poly-
nomial, Periodic and, by far, the Radial Basis
Funcion Kernel, which has been shown to give
good results in a very large variety of tasks.

In this project we present Random Partition
Kernels, a whole new family of kernels firstly in-
troduced in [1]. They are based on random par-
titions, which have some reminiscence of cluster-
ing algorithms. In general terms, these kernels
use the clustering information that we can give
to them to have an idea of how similar two ob-
jects are.

First, we will give all the needed background
to understand the whole project, or at least
have an idea of what we are talking about.
This includes Kernel Methods, Partitions, Dis-
tributions over partitions, Iterative methods and

preconditioning and, finally, Locality Sensitive
Hashing.

After that, we will present the main topic,
which is Random Partition Kernels. We prove
that they are indeed kernels, and we provide a
way to compute an efficient and well-conditioned
approximation.

Then, we will present examples of Random
Partition Algorithms that can be used. The two
first ones are presented in [1], while the next two
are new and developed by us. From the latter
two, the first one uses Markov Processes to bring
up a new way of clustering metric data, and the
second one uses Locality Sensitive Hashing, and
it is a kernel thought for image datasets. Finally,
we present a clustering algorithm for graphs to
show a way to generate random partitions from
a different type of data.

Finally, we test the kernels obtained from the
first four algorithms. We use these kernels in
Kernel PCA and in Kernel SVM algorithms to
show they performance compared to the unker-
nelized versions. Additionally, we compare our
new algorithms to the ones developed in the pa-
per to see if the new ones offer any improvement.

At the end, we will present our conclusions
and give some possible paths for future work.

1

mailto:alex.batlle@estudiantat.upc.edu
mailto:aleix.torres.camps@estudiantat.upc.edu

2 Background

2.1 Reminder on Kernel Methods

To set the background for the project, we will
give some definitions and results on kernel meth-
ods. Let X be the space where our data objects
exist.

Definition 2.1.1 (Kernel). A kernel is any
function k : X × X → R such that:

(i) It is symmetric: k(a, b) = k(b, a), ∀a, b ∈ X
(ii) It is positive semi-definite: for all n ∈ N

and for all x := (x1, . . . , xn) ∈ X n, the
Gram matrix Kij[x] := [k(xi, xj)]i,j∈{1,...,n}
is a positive semi-definite matrix.

Definition 2.1.2 (Positive semi-definite ma-
trix). A matrix A ∈ Mn×n(R) is positive semi-
definite if for any c ∈ Rn ∖ {0}, the product
cTAc is non-negative.

Lemma 2.1.3. Let A ∈ Mn×n be a symmetric
matrix. The following are equivalent:

(i) A is a positive semi-definite matrix.

(ii) All of the eigenvalues of A are non-negative.

(iii) All leading principal minors of A are non-
negative.

Lemma 2.1.3 will be useful to prove that a
function is a kernel. The concept kernel method
refers to any machine learning algorithm that
has been transformed using the kernel trick, that
is, expressing everything in terms of dot prod-
ucts. In this way, we can substitute the dot
products at play with the kernel function, and
this allows for the introduction of non-linearities
and representations of the data objects that
might make the task easier.

2.2 Partitions

We will now give a definition of the concept of
a partition of an arbitrary set.

Definition 2.2.1 (Partition). Given a set D, a
partition of D is a collection of subsets ρ ⊆ 2D

such that:

(i) S ̸= ∅ ∀S ∈ ρ

(ii) ∀S, T ∈ ρ, S ∩ T = ∅
(iii)

⋃
S∈ρ S = D

Example 2.2.2. If D = {a, b, c, d}, then the
following two sets are partitions of D:

{{a, b}, {c}, {d}}, {{a}, {b}, {c}, {d}}

We will usually work with finite D’s. In that
context, if we know that |D| = N < +∞, then
the number of partitions of D is known and it
is the nth Bell number. The Bell numbers are
calculated using the recursive formula

Bn+1 =
n∑

k=0

(
n

k

)
Bk, B0 := 1

2.3 Distributions in the partition
space

Just like with every other discrete space, we can
define a probability distribution over the parti-
tion space (the set of all partitions) by associat-
ing each partition with a number between 0 and
1, such that all of this numbers add up to 1.

As this is quite impractical for big sets, we
state that a distribution over the partition space
can be obtained through any stochastic algo-
rithm (as in, non-deterministic) that randomly
generates partitions of a set [1]. When using
a stochastic algorithm, we will not care about
the underlying partition distribution. Partitions
sampled from a partition distribution are called
random partitions and are the basis for the
next sections.

2.4 Iterative methods and pre-
conditioning

The main issue with kernel methods is that to
calculate the kernel matrix, we usually need
O(N2) steps, and each of these requires com-
puting the kernel function on two data objects,
which may be arbitrarily computationally ex-
pensive.

2

In some cases, though, kernelized machine
learning algorithms can be solved using only the
ability to compute Kv for arbitrary v ∈ Rn.
These type of solving methods are called matrix-
free, and may ease computation time. For ex-
ample, to solve SVMs or PCA, there exist these
kind of methods.

The bounds on the number of iterations of
matrix-free iterative solutions depend heavily on
the condition number of the matrix, κ(K): a low
condition number leads to a numerically stable
solution in a small number of iterations, whereas
a large condition number may do just the oppo-
site and maybe not even guarantee convergence
of the solution. If we can construct a matrix B,
such that we can efficiently evaluate Bv for arbi-
trary v ∈ RN and such that κ(BK)≪ κ(K), we
can perform the iterative methods on this trans-
formed system. B is known as a pre-conditioning
matrix.

2.5 Locality Sensitive Hashing

Locality Sensitive Hashing is a type of hash-
ing that uses functions such that similar objects
have a high probability to go to the same cluster,
and dissimilar objects have a low probability of
ending up in the same cluster. In this project,
we will use LSH adapted for gray scale images,
in the following way:

A hash function, generated randomly, will be
determined by a pixel and a threshold. For a
particular hash function h, the output of an im-
age will be 1 if the pixel associated with h has
a higher or equal value than the threshold, and
will return 0 otherwise. Since images usually
have a large number of pixels, what we will do
is concatenate k of these hash functions creating
a big hash function that returns a k-tuple of 0’s
and 1’s.

Notice that similar images have a high prob-
ability to output the same tuple, and therefore,
go to the same cluster.

3 Random Partition Ker-

nels

In this section we will define a kernel based on a
given partition distribution. We will also worry
about having a feasible, efficient and well condi-
tioned implementation.

3.1 Random Partition Kernels

Random Partition kernels refer to a kernel de-
fined over a partition distribution in the follow-
ing way:

Definition 3.1.1 (Random Partition Kernel).
Let P be a given partition distribution, we will
denote as ρ ∼ P a sample of it, and for a given
object a ∈ X , ρ(a) will denote the cluster where
a belongs according to ρ. Now, for a, b ∈ X , we
define the random partition kernel kP induced
by P as

kP(a, b) = Eρ∼P [I[ρ(a) = ρ(b)]]

where I is the indicator function and the ex-
pectation is over the partition distribution.

Therefore, the random partition kernel is the
probability that two given objects end up in the
same cluster according to the partition distribu-
tion P . Before doing anything with kP , we have
to check that it is indeed a kernel.

Proposition 3.1.2. kP constitutes a valid ker-
nel.

Proof. To see that kP is a kernel, we will
define kρ, for a ρ ∼ P , as

kρ(a, b) = I[ρ(a) = ρ(b)].

By the Central Limit Theorem, we can decom-
pose the expectation into a limit of the average
of n samples, where n tends to infinity, in the
following way:

kP(a, b) = Eρ∼P [I[ρ(a) = ρ(b)]] =

3

= lim
n→∞

1

n

n∑
ρ∼P

I[ρ(a) = ρ(b)] = lim
n→∞

1

n

n∑
ρ∼P

kρ(a, b)

Now, using that a linear combination of ker-
nels with positive coefficients is a valid kernel
and that a convergent limit of kernels is a ker-
nel, it suffices to show that kρ is a valid kernel
for any ρ ∼ P .
For any dataset of size N , let K be the N×N

kernel matrix of kρ. This will contain 1’s only in
the positions i, j such that ρ(i) = ρ(j), these are,
the positions such that the ith and jth element
are in the same subset in the partition given by
ρ.

Then, K can be permuted into a block diago-
nal matrix of the following form:

ZKZT =


1 0 . . . 0
0 1 . . . 0
...

...
. . .

...
0 0 . . . 1



where 1 are matrices with all entries equal to 1
that can be of different sizes, and similarly 0 are
matrices with all entries 0. Z is the permutation
matrix that groups together all the columns of
the same subset in ρ.

Now, using that ZKZT is a block matrix of
PSD matrices, we can conclude that ZKZT is
PSD. Moreover, since a permutation does not
affect the eigenvalues of a matrix, K is PSD.
Therefore, since K is PSD for any dataset, kρ is
a valid kernel.

□

Notice that this kernel computes the affinity
between two elements as the probability that
they end up forming part of the same cluster
according to P . In practice, this can be very
useful, because if we have a good partition dis-
tribution of our dataset, this will define a good
kernel because it will contain information about
the separability of our dataset.

3.2 m-approximate Random Par-
tition Kernel

As we already mentioned, in general, we will not
have the partition distribution itself, and only a
generator of random partitions. Fortunately, we
only need this to achieve a simple approximation
scheme using the following definition.

Definition 3.2.1. Them-approximate Random
Kernel k̃P is the proportion of times that the
partition distribution P assigns a and b to the
same subset, over m samples, i.e.,

kP(a, b) ≈ k̃P(a, b) =
1

m

m∑
ρ∼P

kρ(a, b)

In other words, for practical uses, we substi-
tute the expectation for its estimator. This is a
“good” estimator, in the sense that it has low
variance when we increase m, according to the
following lemma:

Lemma 3.2.2. Let P be a partition distribu-
tion. If we have independent samples from it,
the bound on the variance of the estimator k̃P
is O(1

m
).

Proof. Since ρ ∼ P are independent random
partitions, they satisfy that

kρ(a, b) ∼ Bernoulli(kP(a, b)).

Then, since k̃P is the maximum likelihood es-
timator for kP (because of kρ(a, b) following a
Bernoulli), its variance is bounded by 1

4m
.

□

In conclusion, we can ensure that the m-
approximate Random Partition Kernel k̃P is a
feasible approximation of the Random Partition
Kernel kP .

3.3 Efficient evaluation and well-
conditioning

In this section we will focus in improving the
efficiency of kernel algorithms and in decreasing

4

the condition number of our kernel matrix, since
it is a good practice as we stated in section 2.4.

As we said, some classes of kernel algorithms
can be solved using only the ability to compute
Kv, where K is the kernel matrix and v is an
arbitrary vector. In our case, if K is the kernel
matrix of an arbitrary ρ ∼ P and N the size of
the dataset, K can be stored in N space, and
using that

(Kv)i =
∑
j∈ρ(i)

vj

the multiplication Kv can be compute in 2N
operations.

Using the m-approximate Random Partition
Kernel, we would require mN space and 2mN
operations for a matrix-vector product. Finally,
if we use an iterative algorithm, the overall com-
plexity will be of 2mNI operations. In conclu-
sion, we achieve a matrix-vector product of lin-
ear complexity with respect to the size of the
dataset (since m, I ≪ N) which is important in
terms of Big Data.

Now, to solve the conditioning problem that
the matrix could have, [1] proposes the following
pre-condition matrix:

B = m
m∑

ρ∈P

(Kρ + σ Id)−1

where σ is a small constant to ensure that the
matrix is non-singular. Due to the next lemma,
we can compute (Kρ + σ Id)−1 in only 2N oper-
ations and Bv in 2mN operations.

Lemma 3.3.1. Using the same notation, the
product (Kρ + σ Id)−1v can be computed in the
following way:

((Kρ + σ Id)−1v)i =
1

σ
vi −

1

σ(|ρ(i)|+ σ)

∑
j∈ρ(i)

vj

Proof. Let w be the vector with wi equal
to the right hand side of the equation and L =
Kρ + σ Id. We will show that L(L−1v) = Lw,
then we will have that L−1L(L−1v) = L−1Lw,
simplifying, L−1v = w, which is the equation

from the lemma. Therefore, it suffices to show
that v = Lw.

Notice that the ith row of L = Kρ + σ Id is
full of 0’s except from those positions j such that
j ∈ φ(i), where there is a 1, except for the ith
position, where there is a 1 + σ. Then, as we
know that the ith position in a matrix-vector
product results from computing the dot product
of the ith row of the matrix and the vector, we
have that:

((Kρ + σ Id)w)i = (1 + σ)wi +
∑

j∈ρ(i)∖i

wj =

= vi−
σ
∑

j∈ρ(i) vj

σ(|ρ(i)|+ σ)
+

∑
j∈ρ(i) vj

σ
+
|ρ(i)|

∑
j∈ρ(i) vj

σ(|ρ(i)|+ σ)

= vi+

(
1

σ
− σ

σ(|ρ(i)|+ σ)
− |ρ(i)|

σ(|ρ(i)|+ σ)

) ∑
j∈ρ(i)

vj

= vi + 0
∑
j∈ρ(i)

vj = vi

Then Lw = v, which was what we had left to
prove the lemma.

□

Although we are adding an overhead in the
number of operations, we ensure that the condi-
tion number decreases, and therefore, we obtain
a big reduction in the number of iterations of
the iterative solver.

4 Random Partition Algo-

rithms

In this section, we will explain some algorithms
that create random partitions out of data. We
will first revisit the ones developed in [1], and
then we will expand the list by bringing into
play other algorithms. These algorithms, when
run, create a random partition, which may then
be used in creating the Random Partition Kernel
matrix.

5

4.1 Random Forest Partition
Sampling Algorithm

The Random Forest Partition Sampling Algo-
rithm is an algorithm that takes advantage of
Random Forest models to create clusters of data.
It does so by first creating just one tree T from
the Random Forest model and sampling a value,
d, from a uniform distribution. Then, for every
data object a we have in D, it computes in what
leaf node of T does a end up. Then, it computes
the ancestor of that node at height d, and that
ancestor will represent the cluster that a is as-
signed to. In the end, this procedure outputs a
random partition.

Algorithm 1 Random Forest Partition (RFP)

Input: D ⊆ X , y ∈ RN

T ∼ RandomForestTree(D, y)
d ∼ DiscreteUniform(0, height(T))
for a ∈ D do

leafnode = T (a)
ρ(a) = ancestor(leafnode, d)

end for

Output: ρ

The randomness in the partitions outputted
by this algorithm comes both from the height d
where the tree is “cut” to assign the object a to a
certain cluster, and from the Random Forest tree
creation algorithm, which samples randomly at
each node from a pool of predictors and uses the
best one in terms of Gini gain.

[1] does not present a method to compute
the kernel matrix between test and train, so we
propose the following: first, split the data into
training and testing datasets. Then, create the
clusters with the training data as the algorithm
shows. After that, compute the leaf node of an
object in test, and similarly as with the others,
compute the corresponding ancestor that gives
the corresponding cluster. This gives the cluster
that the test object would belong to according
to the training data.

4.2 Random Clustering Partition
Algorithm

The Random Clustering Partition Algorithm
creates random clusters of data by doing the
following: it first selects randomly some dimen-
sions of the data, then it samples a random num-
ber of cluster representatives (or centers). With
this variables set, it then assigns each data ob-
ject to the cluster of the closest center, where the
distance from a point to a center is calculated
using only the dimensions that were randomly
selected at the start of the algorithm.

Algorithm 2 Random Clustering Partition
(RCP)

Input: D ⊆ X , h ∈ N (h≪ logN)

d ∼ Sample(Bernoulli(0.5), dimX)
s ∼ DiscreteUniform(0, h)
C ∼ Sample(DiscreteUniform(1, N), 2s)
for a ∈ D do

ρ(a) = argminc∈C (∥(ac − a)⊙ d∥)
end for

Output: ρ

This algorithm is quite reminiscent of the k-
Means clustering algorithm, which could also be
used, but would be a little slower because of the
centroid computation it performs at each step.
The algorithm is also similar to k-Nearest Neigh-
bours with k = 1, although only with the centers
and with some randomness added on the initial-
ization of clusters.

We also thought this algorithm could be ex-
panded on by adding a final piece of proba-
bilistic re-assignment of clusters within the for
loop: this would probabilistically reassign points
to their actual closest center using all variables,
and not just a random subset of them. It would
obviously require another parameter, p ∈ (0, 1).

As it also happens with the RFP algorithm,
[1] does not present a method to compute the
kernel matrix between test and train, so we pro-
pose the following: first split the data into train-
ing and testing datasets. Then, create the clus-
ters with the train data as the algorithms shows.
After that, for each object in the testing data,

6

select a corresponding cluster by using either the
minimum distance to the centers or the average
distance to members of a particular cluster.

4.3 Markov Dissemination Pro-
cess

The Markov Dissemination Process is a clus-
tering algorithm for general metric data, that
is, data for which there is a distance function
d : X × X → R+ ∪ {0} defined. We developed
this algorithm to generate random partitions by
making each data point follow a Markov process
in the following way:

Algorithm 3 Markov Dissemination Process
(MDP)

Input: D ⊆ X , p ∈ (0, 1), γ ∈ R−, T ∈ Z+

for a ∈ D do
ρ(a)← 0

end for
C ← {0}
for t ∈ [0, . . . , T − 1] do

q ← 0.5 ∗ exp(γt)
for a ∈ D do

π1 ∼ Bernoulli(1− q)
if not π1 then

π2 ∼ Bernoulli(p)
if π2 then

ρ(a)← argminc(avgb(d(a, b)))
else

c← 1 + max(C)
ρ(a)← c
C ← C ∪ {c}

end if
end if

end for
end for

Output: ρ

This algorithm takes into account previous
knowledge about the data, namely, how the dis-
tance (the dissimilarity) between two objects
should be calculated. Depending on the values
of γ, p and T , it will produce different cluster-
ings, and even fixing γ, p and T produces differ-
ent results. Note that this algorithm is quadratic

on N , i.e., it runs in O(TN2) time.

It works by first, considering that all points
form a cluster, and iteratively allowing them to
escape their cluster and go to a closer one on
average, or to form another one by themselves,
or to stay in their current cluster.

It can produce partitions as one seen in Figure
1, obtained by using γ = −0.02, p = 0.999, T =
200 and D a randomly generated dataset of two-
dimensional points using two bivariate Gaussian
distributions.

Figure 1: Markov Dissemination Process exam-
ple.

4.4 LSH Partitioning

Until now, we have explained general algorithms
to generate random partitions that can be used
in most problems and types of data. But, we do
not need to do that always, we can also focus
on a single type of problem and try to find an
algorithm that generates a partition distribution
that may fit better.

This is what we will explain in this section:
we have developed an algorithm based on Local-
ity Sensitive Hashing (LSH) that partitions an
image dataset, such that similar images have a
larger probability to be on the same cluster than
unlike ones. The algorithm is the following:

7

Algorithm 4 LSH Image Partition (LSHIP)

Input: D ⊆ X , (min k,max k) ∈ N2

k ∼ DiscreteUniform(min k,max k)
H ∼ Sample(DiscreteUniform(0, (d − 1) ×
N), k)
for im ∈ D do

ρ(im) = hash(H, im)
end for

Output: ρ

The algorithm takes a image dataset of (pre-
sumptive) square grey-scale images and a range
for k. Then, it initializes k uniformly within the
given range, and generates the hash function H
randomly. After that, it hashes each of the im-
ages, and the cluster labels are defined using the
buckets the image go into.

The same algorithm can have obvious varia-
tions to increase its flexibility. For example, we
could add the ability to handle multiple channel
images, such as RGB or CMYK. Or, if we want
to track larger shapes we may use convolutional
hashes and not only hashes that operate pixel-
wise. Additionally, we could add regularization
with the purpose to have more collisions and less
clusters. In the end, we showed this algorithm
because we think it is the simplest of its kind.

In this case, it would be easy to compute the
kernel matrix between training and testing data,
because we would just have to hash the testing
images the same way as the training ones and
assign them to the corresponding clusters.

4.5 Markov Clustering Algorithm

The Markov Clustering Algorithm, developed in
[2], is a clustering algorithm for graphs. It makes
use of random walks on graphs to simulate a
flow between nodes. It works by performing the
usual power iterations of the transition matrix
(an operator that is called expansion in the de-
velopment of this algorithm), but it interleaves
an intermediate operation called inflation, which
increments the importance of already important
edges and reduces the importance of less impor-
tant ones. It does so by, for each column of the

transition matrix (which is a stochastic matrix),
raising its elements to a positive power, and then
normalizing the said column to make it sum 1.
This operation obviously keeps stochasticity.

Although it is a very promising algorithm, we
will not use this one for the experimentation sec-
tion for two main reasons: first of all, because
we have pretty much nothing to compare it to,
as all the other algorithms we have presented
are valid for many data types, but have to be
semi-adapted for graphs. The second reason and
the most important one is that the algorithm is
quite slow, it takes time in O(N3), and it does
not even have guaranteed convergence anyway.

5 Experimentation

The main objective of this section is to compare
the two novel random partition kernels (MDP
and LSHIP) with the random partitions pro-
posed in [1] (RFP and RCP). Additionally, we
will also compare the overall performance of the
Random Partition Kernels using a benchmark
algorithm. So we prepare the following two par-
allel experiments:

The first one consists in testing the MDP al-
gorithm. We will work on the bodyfat dataset.
In the first instance, we will apply Kernel PCA,
and then Kernel SVM for regression. As we said,
we will use the Random Partition Kernel with
the three partition algorithms (all but LSHIP),
and additionally, with the Linear Kernel. i.e.
standard PCA and SVM, to have some grounds
to compare performance.

The second one is similar to the previous one,
but now it consists in testing the LSHIP algo-
rithm, from which we will work on the MNIST

dataset, which is, in fact, much harder than the
first one because it has a larger number of vari-
ables. As before, first we will apply Kernel PCA,
and then Kernel SVM, but now, for multi-class
classification. As before, we will compare the
results with the unkernelized version of the al-
gorithms.

Globally, we will compare the Random Par-

8

tition Kernel with the unkernelized version of
the same algorithm, and try to show its advan-
tages. In particular, we will not only use Kernel
PCA, which is an algorithm that only requires
the kernel matrix, but we will also use Kernel
SVM which, as many other predictor algorithms,
needs the kernel similarities computed between
the train and test datasets.

5.1 Kernel PCA for the bodyfat

dataset

To begin with, we apply Kernel PCA to the
bodyfat dataset to obtain a dimensionality re-
duction into two variables. In the following
charts, we can see the dimensionality reduction
using the described kernels. The points are col-
ored with a gradient to visualize if these ker-
nels distinguish the different levels of the vari-
able “bodyfat”.

Figure 2: Standard PCA on bodyfat.

Figure 3: RFP Kernel-PCA on bodyfat.

Figure 4: MDP Kernel-PCA on bodyfat.

Figure 5: RCP Kernel-PCA on bodyfat.

As it can be seen, the simpler shape of the

9

representation comes from PCA, and on the
other hand, the kernelized versions offer differ-
ent shapes coming from the non-linearities of the
method. In all of them, we can observe that
the gradient coloring goes somehow along the
coordinates of the projected data, telling us that
they distinguish this variable as important.

All the kernelized versions offer better results
than the linear one, including Fast Cluster PCA,
although it is quite similar to MDP PCA. In this
case, the best one seems to be Random Forest
Partition Kernel PCA, as it seems to distinguish
certain groupings of values better.

5.2 Kernel PCA for the MNIST

dataset

Similarly as we have done in the previous sec-
tion, here we apply Kernel PCA to the MNIST

dataset, to obtain a dimensionality reduction
into a two variable space. In this case, the points
are colorized with the different classes, i.e., the
numbers from 0 to 9. Moreover, we have to take
into account that MNIST has a large number of
variables (pixels) for each row, so the dimen-
sionality reduction task is much harder. The
dimensionality reduction charts with MNIST are
the following:

Figure 6: Standard PCA on MNIST.

Figure 7: RFP Kernel PCA on MNIST.

Figure 8: RCP Kernel PCA on MNIST.

Figure 9: LSH Kernel PCA on MNIST.

10

As it can be seen, all of the methods offer
unsatisfactory results. However, it seems that
same class points are not far from each other,
then it is possible that in higher dimensional
representations, the separation between classes
is greater. The best method that reflects this
property is RFP Kernel PCA, while the other
ones are very similar to each other. The RFP
is a bit different from the other three, offering
slightly better results.

5.3 Kernel SVM for the bodyfat

dataset

In this part of the section we will test the re-
gression capabilities of the Random Partion Ker-
nels and, in particular, the MDP algorithm per-
formance among them. We will use again the
bodyfat dataset, and we will apply kernel SVM
to predict the variable “bodyfat”. The following
bar plot shows the MSE of the tested methods:

Figure 10: MSE of the Kernel SVM regressors
on bodyfat.

As it can be seen, only the RFP kernel offers
a better performance than the Linear kernel. A
possible explanation of that could be that the
bodyfat dataset is kind of linear, and the only
advantage that RFP has is that it is supervised
and it uses information of the “bodyfat” variable
to generate the partitions, hence the partition it

generates is related to the distribution of this
variable.

5.4 kSVM for the MNIST dataset

In this last section of experiments we test the
classification capabilities of the Random Parti-
tion Kernels and, in particular, the LSHIP al-
gorithm performance among them. We will use
again the MNIST dataset, and now, we will apply
kernel SVM to predict the number that appears
in each image. The following bar plot shows the
prediction accuracy of the tested methods:

Figure 11: Fast Cluster PCA on bodyfat.

As it can be seen, the overall performance of
the Random Partition Kernel is clearly superior
to the standard SVM, with the RCP algorithm
being the lowest performer of the tested algo-
rithms, achieving a similar (but better) perfor-
mance than the Linear kernel. This may happen
because this dataset is far from being easy and
the ideal partitions are hard to find. But, there
are good news for the other kernels, as they offer
a higher performance in this classification task.
In particular, the LSHIP algorithm, that was de-
signed to generate partitions in image datasets,
is the one that has the highest performance, with
more than 85% of accuracy.

11

6 Conclusions

6.1 This work

As the experiments show, Random Partition
Kernels offer a clear improvement in perfor-
mance in the tasks of data dimensionality reduc-
tion, regression and classification with respect to
the unkernelized methods.

In general, RFP is the method that has a
higher accomplishment of the tasks. This can
be explained by recalling that RFP tries to pre-
dict one of the variables from the others in the
dataset, and hence extracts more information
about the data distribution than the other al-
gorithms do, for the most part.

About the algorithms that we developed, it
seems that introducing Markovian properties
does not help quite a lot. The results offered
by MDP are very similar to the ones from RCP,
which is much faster in computation time. Nev-
ertheless, the LSHIP seems to have a higher
performance in the classification task than the
others including RFP, which shows that design-
ing a partition method for your specific problem
should improve the performance of a model.

6.2 Future work

For the future of this work, one could develop
more Random Partition generators, or even im-
prove the ones that appear in this project. To
create a partition method one could search a
clustering algorithm and add some sort of ran-
domness to make it a generator of random parti-
tions. In our opinion, it seems more interesting
to search for algorithms that are very specific to
one single problem or type of data, and compare
their performance with the other general ones to
see if it is worth.

Additionally, one could think of more exper-
iments to compare the Random Partition Ker-
nels with other kernels or even with other non
kernelized methods to see their competitive per-
formance in real world datasets. In this project
we decided not to do that as it would be too

long.

In the line of looking for other random par-
tition algorithms, one could also combine two
or more algorithms that already generate ran-
dom partitions to the same kind of data, hence
modifying their generated kernel matrix, and
maybe improving the performance of the asso-
ciated kernel method. On the research aspect
of the work, one could also investigate whether
two algorithms that sample from similar distri-
butions really make for similar kernels and per-
formances, and derivate some results for the sen-
sitivity of the kernelized algorithm performance
with respect to a distortion in the partition dis-
tribution that generates the kernel.

References

[1] Alex Davies and Zoubin Ghahramani. The
Random Forest Kernel and other kernels
for big data from random partitions, 2014.
arxiv.org.

[2] Stijn van Dongen. Graph Clustering by
Flow Simulation. PhD thesis, University of
Utrecht, 2000. Homepage, comprehensive
explanation, implementation in Python.

[3] Àlex Batlle Casellas and Aleix Torres
Camps. iPython Notebook with the code
for this project, 2021-2022. Code hosted in
GitHub.

A Code

The visualizations that have been used in this
work have been created using code developed by
ourselves using Python and interactive Python
Notebooks, and the algorithms that we have
described and developed have also been imple-
mented using this tool. In [3] we have the code
hosted on GitHub.

12

https://arxiv.org/abs/1402.4293
https://micans.org/mcl/
https://sites.cs.ucsb.edu/~xyan/classes/CS595D-2009winter/MCL_Presentation2.pdf
https://sites.cs.ucsb.edu/~xyan/classes/CS595D-2009winter/MCL_Presentation2.pdf
https://github.com/GuyAllard/markov_clustering
https://github.com/Atellas23/notebooks/tree/main/RandomPartitionKernel
https://github.com/Atellas23/notebooks/tree/main/RandomPartitionKernel

	Introduction
	Background
	Reminder on Kernel Methods
	Partitions
	Distributions in the partition space
	Iterative methods and pre-conditioning
	Locality Sensitive Hashing

	Random Partition Kernels
	Random Partition Kernels
	m-approximate Random Partition Kernel
	Efficient evaluation and well-conditioning

	Random Partition Algorithms
	Random Forest Partition Sampling Algorithm
	Random Clustering Partition Algorithm
	Markov Dissemination Process
	LSH Partitioning
	Markov Clustering Algorithm

	Experimentation
	Kernel PCA for the bodyfat dataset
	Kernel PCA for the MNIST dataset
	Kernel SVM for the bodyfat dataset
	kSVM for the MNIST dataset

	Conclusions
	This work
	Future work

	Code

