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1. Introduction to Machine Learning  

Machine learning is a field that lies at the intersection of statistics, probability, computer science, 
and optimization. The main goal is to explore automatic methods for inferring models from 
data (for example: finding structure, making predictions).

Examples of learning tasks:

SUPERVISED LEARNING: uses labeled data.

Classification: predicting a class or category to each example; note multi-label, 
probabilistic generalizations.
Regression: predicting a real value for each example; note multi-variable 
generalization.

UNSUPERVISED LEARNING: does not use or have data labels.

Clustering: discovering homogeneous groups (clusters) in data.
Dimensionality reduction: finding lower-dimensional data representations.
Density estimation: estimating the probabilistic mechanism that generates data.
Novelty detection: finding anomalous/novel/outlying data.

SEMI-SUPERVISED LEARNING: uses partly labeled data.

Ranking: ordering examples according to some criterion.
Reinforcement: delayed rewarding.

TRANSFER LEARNING: learning in a new task through the transfer of knowledge from a 
related task that has already been learned.

Useful probability and statistics facts  

Central Limit Theorem:
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If  are independent identically distributed random variables, with  and 
, then the sample mean

  approaches a normal distribution as .

Product rule:

If  have a joint probability distribution , then we can factorize the 
distribution as the product

Bayes Theorem:

 

Bayes formula for densities:

In a data analysis context,  is a parameter vector and the following equality holds:

  This can also be expressed loosely as

  where  is the data. This expression gives rise to the notions of likelihood, prior, posterior, 
and unconditional (expected likelihood) distributions:

: prior probability, confidence in  before observing .
: likelihood, probability of observing  if parameters are .

: expected likelihood of observing data , also unconditional.
: posterior probability, confidence in  after observing .

 

Conjugacy:

Definition: Suppose a prior distribution  belongs to a class of parametrized 
distributions . Then the distribution is said to be conjugate with respect to a likelihood 

 if the posterior distribution .

Remember that  For example, Gaussian is conjugate to 
Gaussian, and Beta is conjugate to Binomial.

Using the posterior:



Inductive bias  

Example: complete the following series: 

Answer 1: 132 (model 1: )

Answer 2: 10 (model 2: )

How can we rule out the more complex model?

1. Supply more training data: 

2. Regularize: add penalty to higher-order terms.

3. Reduce the hypothesis space; for example, restrict to quadratic models.

So, the conclusions are this: based only on training data , there is no means of choosing which 
function  is better (generalitzation is not guaranteed). Thus, we must add control to the fitting 
ability of our methods (complexity control).
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Formulation of ML  

 are the measured variables,  are the unmeasured ones,  is the true function and , which 
would be , is the modeled function.

Prediction vs. inference  

Prediction: produce a good estimate for the predicted variable.

Inference:

1. Which predictors actually affect the target variable?
2. How strong are these dependencies?
3. Are these relationships positive or negative?

Common Tasks  

Regression: The goal is to predict some quantitative outcome subject to probabilistic 
uncertainty.
Classification: The goal is to obtain a model based on available training data (known 
examples) with high classification accuracy on  unseen unknown examples (test data), i.e. 
achieving good generalization.
Clustering: The goal is to find homogeneous groups of data and set them apart accordingly. 
Looks like a very different task from regression or classification, but it's both of them with 
some added difficulty: it has an inherent large subjectivity.

Why are these tasks stochastic? 

We have a (complete) input data object  and an output data object . The true relationship 
is , that is . When we measure data about , we measure only the  
portion of the input variables. Therefore, the relation between  and  becomes stochastic.

Setting up the tasks  

There are (at least) two ways of setting up these tasks formally:

Optimization view  

true error of  training error of  + complexity of  (empirical risk + regularizer)

 is called the loss/error function.
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Statistics view  

Use Bayes' formula to compute  and choose one according to this (posterior) 
distribution.

Many times these two views can yield the same results (which is good!). An example would be 
LSQ  MaxLik+Gaussian.

The most general description of the data generation mechanism is in terms of the pdf  in 
the joint input-output space: this is the key to generalization.

Some techniques use , others do not. The important pdf is . Discriminative methods 
use only , while generative methods use the joint pdf .

So, what is a Machine Learning algorithm/technique?

A ML algorithm gets a dataset  and returns a model of  ( a representation of  that either 
gives structure to  or that allows to make predictions on unseen observations), together with an 
estimation of the model quality. The algorithm itself typically determines the model space  and 
the loss function .

And why are linear models so nice?

We will begin our analyses with linear models and techniques. A model is linear when, up to an 
invertible mapping, it is a linear function of its parameters;  is linear when is depends 
linearly on , but we do not say anything about . For example,  is 
linear. A linear model:

Is analytically tractable: we have closed-form solutions or fast convergent iterative 
methods for the solution.
Has a unique solution: there are no local optima.
Is highly interpretable.
Is amenable to inference: we can ask (and answer) questions about the importance and 
weight on the target of the different variables.
Has user-defined fitting ability, via the basis functions.
Is capable of being regularized: complicated models can be penalized.

General form of a linear model  

A linear model has a general expression as

The functions  are called basis functions (they constitute a feature map) and are non-linear wrt 
.  is a strictly monotonic function: in Neural Networks, this is called an activation function.

On data pre-processing  

Each problem requires a different approach in what concerns data cleaning and preparation. This 
pre-processing procedure is very important because it can have a deep impact on performance; 
it can easily take us a significant part of the time. So, the important things to take into account on 
data pre-processing are:

Treatment of missing, anomalous, and incoherent or incorrect values.
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Coding of non-continuous or non-ordered variables.
Possible elimination of irrelevant or redundant variables (feature selection).
Creation of new variables that can be useful (feature extraction).
Normalization of the variables (standardization).
Transformations of the variables (for example, corrections of serious skewness and/or 
kurtosis)

Non-standard data (images, audio, text...) may need completely ad hoc treatments.



2. Linear Data Visualization  

Dimensionality reduction  

There are two main goals associated to these techniques:

Signal representation: the goal is to represent the data accurately in a lower-dimensional 
space.
Signal classification: the goal is to enhance the class-discriminatory information in the 
lower-dimensional space.

Unfortunately, there is no systematic way to generate non-linear transforms, so we will focus on 
linear methods for feature extraction:

PCA: Principal Components Analysis.
FDA/LDA: Fisher's Discriminant Analysis.
ICA: Independent Components Analysis.

Principal Components Analysis  

This feature extraction method is explained in the file ../AD/AD.pdf .

Fisher's Discriminant Analysis  

FDA is a technique for dimensionality reduction, supervised classification, feature 
extraction and data visualization.

Idea: projection of the data onto a lower dimensional linear space, such that the separability of 
projected data is maximized.

Fisher's idea is to regard dot product as the projection  of some  from classes  or , 
via a projection vector : . In order to find a good projection vector, we need to 
define a measure of separation between the projections:

where  is the number of examples on every class. We then choose to maximize the 
squared distance between the projected means,

However, the distance between the projected means is not a very good measure since it does not 
take into account the dispersion (scatter) within the classes. The problem is that the covariance 
matrices for each class are far from being diagonal. We actually want to look for the projection 
where examples from the same class are projected very close to one another and the projected 
means are as far apart as possible:
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The solution (proposed by R. Fisher) is to maximize a function that represents the difference 
between the means, normalized by a measure of the within-class scatter:

1.  a class we define the scatter as

2. The total scatter is .
3. Fisher's idea was to maximize the following function:

It can be shown that  can be rewritten as:

where

 is the between-class scatter matrix (rank 1).
 is the within-class 

scatter matrix.

To find the maximum of  we derive and equal to zero,

and upon solving we arrive at the following generalized eigenvalue problem:

solving it yields  known as Fisher's Linear Discriminant (1936), although it 

is not a discriminant but a specific choice for projection down to one dimension.

FDA generalizes very gracefully for  class problems: the only restriction is that the maximum 
number of projection directions is . FDA can also be derived as the Maximum Likelihood 
result for the case of Gaussian class-conditional densities with equal covariance matrices; in this 
case, it is known as LDA.

WARNING! FDA is able to extract a maximum of  projection directions, maybe insufficient 
for complex data. PCA is able to extract  projection directions, but it is not clear how many are 
necessary.



Counterparts  

When will FDA presumably fail? If the classes are far from Gaussian, the FDA projections will 
not be able to preserve any complex structure; for an example, this image:

FDA will also fail when the discriminatory information is not in the mean but rather in the 
variance of the data (e.g., if ); for example,
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3. Theory for regression and linear models (I).  

The regression framework  

Given data , where ,

Statistics: estimation of a continuous random variable  conditioned on a random vector 
.
Mathematics: estimation of a real function  based on a finite number of noisy examples 

.

The departing statistical setting is ; a model is any approximation of . We 
assume  are iid random variables such that  and , and that  and 

 are independent variables.

The risk of a model  is

where  is a suitable loss function that satisfies:

 (not necessarily in the other direction)
 does not increase when  decreases.

 is closely related to the distribution of the noise model .

Example: if we assume for example that , using a maximum likelihood argument 
it can be shown that the right loss function is the square error:

The risk is therefore

If we enjoy complete freedom to choose , the solution is:

known as the regression function. Since , we can alternatively express the regression 
setting by stating that  is a continuous random variable such that .

Claim: 

Proof:

In a practical setting, we don't know . Instead, we have a finite i.i.d. data sample of  
labeled observations , where . Then, intuition tells us to 
solve for 
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This is equivalent to minimizing the risk function; we'll see this in the next part. For now, we must 
impose restrictions on the possible solutions , this is, we must restrict the search space to a 
specific class of functions .

We can compute an approximation to the true risk, called the empirical risk, by averaging the 
loss function on the available data :

This quantity is also known as the apparent error. The Empirical Risk Minimization (ERM) 
principle stats that a learning algorithm should choose a hypothesis (model)  which minimizes 
the empirical risk among a predefined class of functions :

The quantity  is known as the training error. In theoretical ML, we are very much 
interested in:

How this error fluctuates as a function of the data .
How far this error is from the true error, this is, to bound ; at the very least, 
to bound .
How far this error is from the best possible error, this is, to bound ; at the 
very least, to bound .

Bias-Variance analysis  

Recall the assumption that . In this case, using the square error, the risk can be 
decomposed as:

where  is the regression function. Therefore, we arrive at . We can now 
forget about  and the risk and instead aim at minimizing the :

A learning algorithm for regression is a procedure that, given data  and the search space , 
outputs a model  that aims at minimizing .

Consider now one particular ; different  will produce different  and therefore different 
predictions . Let us concentrate on the quantity : we wish to eliminate 
the dependence on . Therefore, we investigate its expected value, , taking 
over all possible  of size . If we develop a little more their formulas,

We can interpret these summands as , and 
. Then, the formula is more clearly stated as
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and the risk can be expressed as a sum of three summands:

The derivation above depends on a particular point , so let us put it all back in place within 
their integrals:

In general, an underfit model will have a big bias, while an overfit model will have a high 
variance. The abilityi to fit has a name: it's called the complexity of the function class. Both 
models that are more or less complex than needed will tend to have large prediction errors. In 
the former, this will be dominated by the variance term, while in the latter, it will be dominated 
by the (square) bias term.



4. Regression theory and linear regression models
(II)

 

Our departing statistical model still is

where  is a continuous rv such that  and . Let's assume again that we 
further model , and:

with  and . Suppose we have an iid sample of  
labeled observations , where . Therefore, our statistical 
model is  or:

with unknown parameters . Put  and  the 

matrix of the . Define the likelihood as . Let us maximize the log-likelihood:

If we derive this wrt  and , and set equal to zero, we get:

Therefore, we can calculate the estimates for both parameters:

Note that , which is a biased estimator for . An unbiased estimator is

It's also known that  is an unbiased estimator of  and that . All of this 

implies that .
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The matrix  is known as the Moore-Penrose pseudo-inverse of . It is the 
generalization of the notion of an inverse matrix to non-square matrices. It has the property that 

, although in general . However, both are symmetric.

Theorem. Let , with . If the column vectors of  are linearly independent, i.e., if 
, then:

1. The matrix  is symmetric and positive definite. In particular, it is non-singular.
2. The least squares problem

  has a unique solution.

3. This solution can be found solving the so-called Gauss' normal equations,

  for .

Quality of the fit  

In statistics,  is called the deviance.
In ML, this quality measure is the square error:

A much better quantity to report is the ,

In statistics,  is the proportion of the target variability explained by the model.

Leaping forward: basis functions  

Recall that a model is linear if up to an invertible function its parameters play a linear role in the 
model. For example,

is a polynomial on , but also a linear model on .

A simple but powerful idea is the introduction of basis functions:

where . This is still a linear 
model. Define  as the vector of targets, and  as the matrix of the 

:
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So, let us maximize the new log-likelihood: the Gauss' normal equations are

and their solution is

Singular Value Decomposition  

The direct computation of the pseudo-inverse of  has two major drawbacks:

When  is large,  is a large  matrix; then, the computation of the 
required inverse  can be costly.

If  is singular, or close to, then the required inverse  can be impossible, or 
numerically delicate.

Theorem. Every matrix  can be expressed as , with ,
,  diagonal. The columns of  are the eigenvectors of , and the columns of  
are the eigenvectors of .

Let . Then exactly  elements  in the diagonal of  are strictly 
positive; the remaining elements are null. These  are called the singular values and 
correspond to the square roots of the positive eigenvalues of  (same as ).

Sometimes an economy size decomposition is delivered: If  is  with , then only 
the first  columns of  are given and  is .

SVD for least squares  

Given the least squares problem

the solution can be obtained with the SVD as:

Compute the economy size SVD of .
Solve for  as , where only the  are considered.

Regularized least squares  

The maximum likelihood framework can yield unstable parameter estimates, specially when

the explanatory variables are highly correlated;
there is an insufficient number of observations  relative to the number of predictors 
(basis functions  or dimensions ).

In the context of regression with Gaussian noise (square error), it is quite common to penalize the 
parameter vector. Define the penalized empirical error as:
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If we set its derivative wrt  equal to zero

we solve for  and we get

This is known as Tikhonov or  regularization in ML. Perhaps it's best known as ridge 
regression in statistics, where it's usually explained as a "penalized log-likelihood". This can also 
be derived from Bayesian statistics arguments. Tikhonov regularization has some advantages:

Pushing the length of the parameter vector  to  allows the fit to be under explicit 
control with the regularization parameter .
The matrix  is positive semi-definite; therefore  is guaranteed to be positive 
definite (hence non-singular), for all .

We change names of , for it is fancier. If we assume that the , then 

 and then, observe that  is the mean square error,

This is all nice, but how do we control the fit explicitly?

Regularization allows the specification of models that are more complex than needed 
because it limits the effective complexity.
Instead of trial-and-error on complexity, we can set a large complexitr and adjust the .

And how do we set the value of ? Using a technique called Leaving-one-out cross validation 
(LOOCV), because

In this case,  is a very forgiving parameter; we usually perform a log search.
There is a closed efficient formula for the LOOCV for linear models.

To get to the best model we can, we follow this steps:

1. Choose a (large) set of values .

2. For every ,

1. Solve for .

2. Compute the hat matrix .
3. Compute the LOOCV of  in  as



3. Choose the model with the lowest LOOCV.

A very popular method is Generalized Cross-Validation (GCV):

which is a more stable computation for the LOOCV. Note that  is needed to compute both  
and .

LASSO Regression  

The LASSO (Least Absolute Shrinkage and Selection Operator) regression is regularized 
linear regression. The choice for the regularizer is  and we get:

This turns out to be equivalent to

In ridge regression, as the penalty  is increased, all coefficients are reduced while still remaining 
non-zero. In the LASSO regression, increasing the  penalty causes more and more of the 
coefficients to be driven to zero. As the dimension  increases, the multidimensional spheres 
have an increasing number of corners, and so it is highly likely that some coefficients will be set 
equal to zero. Hence, the LASSO regression model performs shrinkage and therefore, feature 
selection.

The LASSO loss function is no longer quadratic, but it is still convex. The minimization problem 
tied to LASSO regression is a special quadratic programming (QP) problem, for which the Least 
Angle Regression (LARS) procedure is used. It exploits the special structure of the problem, and 
provides an efficient way to compute the solutions for all possible values of  (the 
regularization path).

Conclusions  

We have introduced linear models as linear combinations of non-linear basis functions (BF):

ADVANTAGES:

We can represent non-linear functions of the data using linear fitting techniques; we have 
the freedom to choose the form of the BFs.
The fit can be under tight explicit control by regularization.
The computations can be very efficient, no need to refit for LOOCV.
Interpretability of the model is rather high.

LIMITATIONS: the most important weak point is the BFs.

Many interesting BFs scale very poorly with dimension (polynomials, Fourier series, splines, 
...)
Our BFs are not flexible; they are data-independent.
As a consequence, their number may be very high, which in turn leads to unstability 
(because of low significance of the coefficients).
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The solution is to develop basis functions with parameters such that:

This BFs scale well with dimension (inner products, distances, ...)
They are data-dependent, because of the parameters.
As a consequence, their number might be much lower, and the coefficients will be 
significant.
Unfortunately, the new parameters will play a non-linear role in the model: their 
optimization is plagued with local optima.



5. Classification theory and linear classification
models (I). Bayesian decision theory.

 

Introduction: Bayes' formula  

Discrete Random Variables. Let  be a discrete r.v. with probability mass function (pmf) . We 
use the shorthand notation  to mean . Similarly, we write  to mean 

, etc, where

Let  be the possible values that  and  can take, 
respectively. Then, ,

Since , it follows that, for any 

Continuous Random Variables. Let  two continuous r.v. with pdfs  and joint density 
. We use the shorthand notation  to mean , etc.

Therefore,

Observation. Mixed random variables.

Suppose  is a continuous r.v. and  is a discrete r.v. with values in . In this case, 
 is a continuous r.v. and  is a discrete r.v. Moreover,

Decision rules  

We are interested in determining the class or category of objects of nature according to , a 
discrete r.v. with values  that represent the two possible classes. The prior probabilities 
are . How should we classify objects?

Decision Rule 1. We don't measure any variable. We have no information other than "a new 
object comes".

This rule classifies all objects into the same class; therefore, it will eventually classify an object 
into the wrong class. Thus, the probability of error of this rule is
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This rule is useful only if  or if . This is the optimum rule when 
no information is measured.

Discrete feature measuring. Suppose now that  is a discrete r.v. taking values in 

 that measures a feature of objects. Now,  is the 

posterior probability that an object with measured feature  belongs to class . 
Moreover, .

Upon observing , the Bayes formula converts prior class probabilities  into posterior 
probabilities . How should we classify objects now?

Decision Rule 2. We now measure a feature  of the object coming forth.

The probability of error for this rule is

This rule is known as the Bayes rule or classifier.

Lemma. For all , .

Proposition. 

Proof:

Equality holds only if .



Continuous feature measuring. The next step is to consider a r.v.  with pdf  that 
measures a continuous feature of an object. Let  be the support of , i.e. . 
In this setting,  are the conditional densities of  for every class.

Proposition. 

Proof:

Equality holds only if .

The Bayes classifier  

The Bayes classifier can be extended in two ways:

1. Consider a vector  of continuous r.v. with pdf  that 
measures  continuous features.

2. Consider a finite set of classes , a discrete r.v. with values , that represent the 
possible classes ( ).

Therefore, we have new probabilities . The new Bayes rule says:

Decision rule.

The sets  are called regions, and depend on the specific classifier. It is worth 
noting they form a partition of the total space, which is in general thought of as  or, in the 
vector setting, .

We now want to see that the Bayes classifier is optimal in terms of probability of error. To do 
this, let us assume a classifier with regions . Then,

So, if any other classifier has a smaller error, the Bayes classifier is optimal.
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The Bayes classifier can also have a rejection class (illustrated here for two classes); if we fix 
,

For every feature vector  we take one of three possible actions.

Consider a finite set of actions . For each , denote by  the loss 
for choosing  when  is known to be in . This is a simplified setting in which this loss does 
not depend on .

Example: Let  and let  stand for "classify  into class " for ; let  
stand for "do not classify ". A possible set of losses is:

This example suggests that a decision not to classify is less costly than a misclassification.

The notion of risk  

Definition. Conditional risk. For a given feature vector , define the conditional risk of an action 
as:

Definition. Decision rule, Total risk. A decision rule is any function  from the support of 
the probability density function  to the action set  that assigns an action  to every  such 
that . The total risk of a decision rule is

We are interested in the decision rule that minimizes the total risk. Consider the rule

You may recognize it as the Bayes rule. Given that this rule minimizes the argument of the 
integral for every possible , it follows that the Bayes rule has the lowest possible risk. The value 

 is called the Bayes risk and is the minimum risk possible in global terms.

0/1 losses  

In many applications the 0/1 loss is used, usually in absence of more precise information:

Consider  classes, and actions . Then, the conditional risk for each 
action is
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Discriminant functions  

Functions of the form  are a useful tool to build an abstract classifier. An object  is 
assigned to class  when  is the highest among the values . For example,

If  is a discriminant function, then so is , for any strictly monotonic function . For two 
classes, we can use a single discriminant function, called a dichotomizer:

1. Define 
2. Assign  to class  if  and to class  if .

The Gaussian Distribution  

A normally distributed variate random vector  has a pdf like

where  is the mean vector and  is the real symmetric and positive definite 

covariance matrix.

 and .
 and .

As , then  are statistically independent . In general, 
only  holds.

The quantity  is called the Mahalanobis distance. What is 
behind the choice of a multivariate Gaussian distribution for a class?

We want to have a prototype object, which is modeled by the mean vector.
Also, the noise modeling is easy because in a multivariate Gaussian, this is modeled by the 
covariance matrix.
Even though, it is very important to take into account that the number of parameters of the 

multivariate Gaussian is , for dimension .

The surfaces of equal probability,  are hyperellipsoids. The principal directions 
or components (PC) of the hyperellipsoids are given by the eigenvectors  of , which satisfy 

, for . The lengths of the hyperellipsoids along these axes are proportional to 
, the singular values associated with . Note that as  is positive definite, all .

Properties  

Simplified forms: if the  are statistically independent, then ,  is 
diagonal and the PCs are axis-aligned.
Analytical properties, for example, any moment  can be expressed as a function of 

 and .
Central limit theorem, the mean of  i.i.d. random variables tends to a normal distribution, 
as .
Linear transformation invariance, the distribution of a linear transformation of the 
coordinate system remains normal.
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6. Classification theory and linear classification
models (II).

 

Generative Bayesian classifiers  

Discriminant functions for the Gaussian density  

We showed that the Bayes rule minimizing the probability of error could be formulated in terms 
of a family of discriminant functions:

When , this family can be reduced to very simple expressions. Using Bayes 
rule and the natural logarithm, the discriminant function for class  becomes

Erasing constant terms,

This expression is called a quadratic discriminant function, and the decision boundaries 
 are general hyper-quadrics in dimensional space. The resulting classifier out of 

the class of discriminant functions together with the decision rule is called Quadratic 
Discriminant Analysis (QDA).

If we assume that all class-conditional distributions  have the same covariance 
matrix , after removing all terms that do not depend on  or  we get:

Reorganizing terms we obtain , where

This is because  is a symmetric matrix for being the inverse of a symmetric matrix. These are 
linear discriminant functions (linear in ) and the decision boundaries are hyperplanes if 
dimensional space.

If we further assume that all  pairs are statistically independent, that is,  is a 
diagonal matrix, we get:

If we further assume that all  have the same variance  (for example, standardizing all 
variables), that is , we get:

If we further assume that all classes have the same prior distribution, , we get:
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In all cases, we have a minimum-distance classifier in : 

In the general case (some covariance matrices are different), the classifier uses a different 
Mahalanobis distance (a fully-weighted Euclidean distance) from  to each class. This is 
called Quadratic Discriminant Analysis (QDA).
In case all covariance matrices are equal, the classifier uses the same Mahalanobis distance 
from  to all classes. This is called Linear Discriminant Analysis (LDA).
In case all covariance matrices are diagonal, the classifier uses a simply-weighted Euclidean 
distance from  to all classes.
In case all covarianve matrices are a multiple of the identity matrix, the classifier uses an 
unweighted Euclidean distance from  to all classes.

A numerical example  

Derive a linear discriminant function for the two-class classification problem defined by the 
following Gaussian class-conditional densities:

Solution: since all the  are statistically independent ( ) and have the same variance 
, that is , we get:

Then we can build an optimal dichotomizer:

and the decision rule is

Substituting, , which results in

The prediction for the test example  is , given that 
.

Computations in practice  

In practical situations, only an i.i.d. data sample  is available. Let  be the subset of 
observations known to belong to class . Then  is a partition of . We can use 
unbiased estimates for the vector means and for the class priors:

If we know (or assume) that covariance matrices are different (we wish to use QDA):
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Otherwise, if we know (of assume) that covariance matrices are equal (we wish to use LDA):

Discussion  

Bayesian classifiers are optimal when the class-conditional densities and priors are known; the 
methods are well-principled, fast and reliable. For Gaussian classes, we get a quadratic classifier 

 QDA (if all covaraince matrices are equal, a linear classifier, LDA); using a specific distance 
function corresponds to certain statistical assumptions:

If the class-conditional densities are far from the assumptions, the model will be poor.
Even if the class-conditional densities are Gaussian, the parameters should be reliably 
estimated (particularly for QDA).
Once we use sample statistics instead of population parameters, we lose optimality.

The question whether these assumptions hold can rarely be answered in practice; in most cases 
we are limited to posing and answering the question "does this classifier give satisfactory 
predictions or not?".

Regularized Discriminant Analysis  

If  for some , QDA cannot be applied, because the class covariance matrix  is 
singular. If , neither QDA nor LDA can be used, because both  and  are singular. 
These problems can be overcome by applying regularization:

where . LDA is  and QDA is .

Pros & cons  

Pros:

Adaptable to all class-conditional distributions (not only Gaussian), even with mixed 
variables.
Very resistant to overfitting the data sample.
Accepts class priors and losses for misclasiffications.

Cons:

Assumption of Gaussianity may be far from true.
Needs sufficient examples epr class if we wish to use QDA.
Requires matrix inversions (costly or numerically delicate).

The Naive-Bayes classifier  

We showed that the 0/1 loss Bayes rule minimizing the probability of error could be formulated 
in terms of discriminant functions , for . We can expand the 
conditional probability to be

and if we assume  are pairwise independent given the class, this is equal to
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Extensions  

Multiplying numbers smaller than 1, we can easily get numeric errors in a computer, so we want 
to ease the computations. To do this, we can numerically extend (and ease) the classifier by 
taking logarithms as such

How do we deal with continuous variables? We have two options:

1. Assume a particular pdf for the variable and estimate its parameters from the data.
2. Discretize the variable and treat is as discrete.

Null empirical probabilities  

In test examples  it may happen that some variable  has a value  not present in the 
sample used to create the classifier, hence  and we are in trouble. One way 
to avoid this kind of situations is to use the Laplace correction:

Here  is the "weight" assigned to the prior probability and  is the number of differents values 
of variable .

The kNN classifier  

Definition. Metric. Let  be a set. A metric in  is a two-parameter function 
 satisfying the following properties :

1. 
2. 
3. 

A pair  is a metric space.

Decision rule. The 1NN technique. The 1NN technique classifies any  in the same class of 
the "nearest neighbour" of  in , that is

Decision rule. The kNN technique. The kNN technique considers the  "nearest neighbours" 
of  in  and votes for the most represented class:

In this rule, ties may happen. These are broken randomly. There are no ties for two-class 
problems and odd .

Theorem (Cover & Hart, 1965). Asymptotic analysis of the 1NN technique. Call  the probability 
of error of 1NN and  be the Bayes error. Then, as ,
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In particular, for two-class problems,



7. Classification theory and linear classification
models (III).

 

Discriminative classifiers  

Maximum Likelihood (ML) framework (I)  

Generalized Linear Methods  

Generalized linear models are a very general and classical technique for fitting linear models. 
They are the genuine representatives of discriminative methods. The main difference between 
discriminative and generative methods is that using generative methods, we can generate new 
data from the parameter estimation we have previously done, while in discriminative methods 
we neither can't or are interested in doing so.

These methods work for many target types:

Binary (two-class) and nominal (multi-class).
Proportions and counts.
Ordinal (ordered classes).
Continuous target variables.

They admit very general predictors. Categorical variables are binarized.

Definition. Generalized linear model. A GLM is a linear predictor of a convenient function  of the 
conditional expected value of the target variable. Mathematically,

This function  is typically smooth (of class  for some ) and globally invertible. It's called 
the link function. We optimize the  and  parameters directly, without any assumptions of the 
distribution of the . The target variable rows  are taken as independent and drawn from a 
distribution of the exponential family: Poisson, Gaussian, Bernoulli, Gamma, ...

The modeler chooses a suitable distribution for  given :

1. If we are predicting a real continuous value, we will usually use the Gaussian distribution; 
hence,  is the identity function. This is called linear regression.

2. If we are in a two-class problem, we will use the Bernoulli distribution, with link function 
. This method is called logistic regression.

3. If we want to predict a counter, we will usually use the Poisson distribution, with link 
function . This is called Poisson regression.

This generality comes at a cost: in general we need an iterative procedure for the optimization of 
the  and  parameters. A popular procedure is to set it up as a Maximum Likelihood problem 
and use a preferred numerical optimization method (e.g. Newton-Rhapson).

Logistic regression  

We are in the case of binary classification ( ). We model the posterior probability for class 
 as:

where  is the logistic function. Obviously, 

.

af://n698
af://n699
af://n700
af://n701
af://n726


The logistic function is a  function . This function is a bijection, with inverse

for . This is called the logit function, and looks like this:

Each , where ,

Notice that . Hence, we are identifying  with .

Interpretation of the model  

The main thing to remember about logistic regression is that "The log of the odds is a linear 
function of the predictors". Since , we have

Parameter obtaining  

Suppose we have an i.i.d. sample of  labeled observations , where 
.

The first thing we notice is that we have  parameters to fit. In the "equivalent" case of  

generative methods (LDA), we had  parameters. So, this cases scales better (linearly) 
than LDA did (quadratically). We re-write , with

Now we see the obtaining of the parameters from a Maximum Likelihood perspective:

Now,
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Therefore,

When we set the derivative of this expression equal to zero, we are not able to isolate the 
parameter vector . Hence, we need an iterative method, such as Newton-Raphson.

Newton-Raphson  

As the Maximum Likelihood of the logistic regression does not have a closed-form solution, we 
iterate over  to obtain a good enough approximation to the parameter vector :

All of this because

Here,  is the data matrix of the ,  is a diagonal matrix such that , for 
, and . When all of this is put into place, we are 

left with the following algorithm, called Iterated Reweighted Least Squares (IRLS):

1. Initialize  and , for . (This is the null model)

2. Iterate the following until convergence:

1. Update , where .

2. Update , for .

3. Update .
4. Update .

3. Return .

Deviance and AIC  

In the context of GLM,

is called the deviance (in ML, this is the error). The null deviance is the deviance of the null 
model, and the residual deviance is the deviance of the proposed model. We can also define, for 
linear models, the Akaike Information Criterion, which is the deviance with a complexity 
penalization, . Actually, this penalization  is a rudimentary form of 
regularization.

Interpreting the coefficients  
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Define , so . Then, we can 

interpret the coefficient in position  using the following relation between odds:

Poisson Regression  

In many statistical studies, one tries to relate a count to some scientific variables. When there is 
no upper natural bound to this count, the logistic regression is not appropiate, and hence, the 
Poisson regression appears as a good alternative. This model relies on the Poisson distribution, 
a discrete distribution  with probability mass function

We consider independent Poisson random variables  with . We know 
that . We have an i.i.d. sample of  observations  and a corresponding 
sample , where each  is drawn from . Our idea heare is to model  as 

, with link function . Then, the Poisson regression model is 
, or .

If we want to estimate the parameter vector using maximum likelihood, we proceed like the 
previous case for Logistic regression, and we arrive at

Again, this expression has no closed form solution for  once we derive and set it equal to zero; 
however, we can still use Newton-Raphson, because  is a convex function.

Maximum Likelihood framework (II)  
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8. Artificial Neural Networks (I): The Multilayer
Perceptron (MLP)

 

An (artificial) neuron is an abstract computing unit that gets an input vector, combines this 
vectors with a vector of local parameters (called weights) and sometimes with other local 
information, and then outputs a scalar quantity. It's usually represented like this:

The output can be delivered as part of the input of another neuron or to the neuron itself (self 
connection).

Reminder: a directed graph (DG) is a structure composed by a set of nodes and a set of labeled 
directed segments that connect the nodes.

An artificial neutal network (ANN) is a parallel and distributed information-processing 
structure that takes the form of a DG, where the nodes are neurons and the labels correspond to 
the weights.

A layer is a collection of neurons:

Sharing a common input vector (usually computing the same function).
Not connected with one another.

The output layer in an ANN is the last in the direction of the arrows. All other layers are called 
hidden. A hidden neuron is a neuron in a hidden layer. An ANN is recurrent if its graph contains 
cycles; otherwise, it is a feed-forward network. A recurrent network represents a dynamical 
system; a feed-forward network represents a single function.

The simplest choice of an ANN is a linear combination of the inputs:

This represents just a single neuron. Recall that we previously defined (in Chapter 1) a linear 
model as a model that, up to an invertible map, is linear on its parameters. Then, this previously 
defined ANN is a linear model. It can be extended to multiple outputs:

Now, this represents a layer of neurons. Finally, if we add a non-linearity to the output:
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This still represents a single neuron layer and a linear model, all performing the linear 
combination and the computation of . Now, we compact the notation.

1. Define  and . We now have:

2. Let the weight matrix  gather all the weight vectors by columns. We introduce the 

notation  to mean that  is applied component-wise. The network we now have 
computes, then,

The activation function  is often a sigmoidal one: this is defined as a function that satisfies:

Being differentiable.
Having a non-negative (or non-positive) bell-shaped first derivative.
Having horizontal asymptotes in .

The most commonly used sigmoidal functions are:

The logistic family:

The hyperbolic tangent family:

How to train a single layer ANN: the Delta Rule  

We wish to fit  to a set of learning examples , where 
. In order to do this, we define the (empirical) mean-square error of the 

network as

Let  be a differentiable function; we wish to minimize it by making changes in its 
variables. Then, the increment in each variable is proportional to the corresponding derivative: 

, with

In our case, the function to be minimized is the empirical error and the variables are the weights 
 of the network:

This  is called the delta, and  is called the net input. Then, combining the two 
equations above,
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When  is the indentity, we get the LMS Learning Rule:

This technique represents a linear regressor where the regression coefficients are estimated 
iteratively. This is a form of learning, but it is not incremental: we need all the examples from 
the beggining. This is also usually called batch learning.

We are so sure the iterations get to a minimum because the mean-square error function is 
convex in : it defines a convex hyper-paraboloidal surface with a single global minimum . 
The constant  controls the stability and speed of convergence. If chosen sufficiently small, the 
gradient descent procedure asymptotically converges towards , regardless of the initial vector 

. A sufficient condition on  is , where  is the largest eigenvalue of the 

input self-correlation matrix . In practice, one may use , since 

.

In the on-line version of the delta rule, we also begin with  arbitrary and apply:

At each step , the example  is drawn at random from . It can be shown that if 
 and , then  converges to the global minimum  in the mean 

square sense:

One such procedure is to take , with initial .

Towards non-linear models  

How could we obtain a model that is non-linear in the parameters (a non-linear model)? We 
depart from the basic linear model:

where  is a sigmoidal function. If we apply any non-linear function to the weights, we are just 
transforming them into another set of weights, and the model is still linear of the parameters. 
Then, suppose we apply non-linear functions to the input data:

This is a generalization of the previous case, which we can recover by setting  and 
, with .

Approach 1. Make  a set of predefined functions. For example,  and 
polynomial fitting. Consider the problem of fitting the function
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to , which is a special case of linear regression, where the set of regressors is 
. Therefore . The weights here can be estimated by standard 

techniques (ordinary least squares).

What if we have a multivariate input ? The corresponding polynomial is:

The number of possible regressors grows like . So many regressors (while holding  fixed) 

causes increasing troubles for estimating parameters: it is mandatory to have more observations 
than regressors (  must be less than ). Also, the statistical significance of the weights decreases 
with  and increases with .

Approach 2. Why not try to engineer adaptive regressors? By adapting the regressors to the 
problem, it is reasonable to expect that we shall need a much smaller number of them for a 
correct fit.

The basic neural network idea is to duplicate over and over the model:

where 

with . With one duplication we have created another layer of neurons. It is 
clear that we can play this game as many times as we want, further extending this to any number 
of hidden layers we want. So, to summarize this:

We have a new set of regressors , which are adaptive via the  
parameters (called the non-linear parameters).
Once the new regressors are fully specified (i.e., the  parameters are estimated), the 
remaining task is linear (via the  paremeters).
What kind of network gives rise to this function if we keep duplicating? The Multilayer 
Perceptron or MLP.
Under other choices for the regressors, other networks are obtained. For example, the 
standard RBF (Radial Basis Functions) network with parameters :

Error functions for classification  

In classification we model the posteriors . In two-class problems, we model by creating 
an ANN with one output neuron ( ) to represent  and thus 

.

Suppose we have a set of learning examples , where  
(assume  is i.i.d.). We take the convention that  means  and  means 

, to model:
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which is conveniently expressed as . This is a Bernoulli 
distribution. Assuming an i.i.d. sample, the likelihood function is:

So, which error should we use? Let us define and minimize (again) the negative log-likelihood as 
the error:

popularly known as cross-entropy. This is the error function we should use in binary 
clasiffication.

The case for more than two classes, , is obtained analogously, though with a bit more 
work. The error function for the multiclass classification problem turns out to be:

known as the Generalized Cross-Entropy.

Training MLPs: An introduction to the backpropagation
algorithm for regression

 

(adaptation to binary/multiclass classification)

A regression MLP of  hidden layers is a function  made up of pieces  of 
the form:

where, for every ,  is the matrix of weights connecting layers  and  

(  is the weight of the th input of the th neuron in layer ),  is the number of neurons in 

layer  (its size) and  is the th basis function in layer ,

with . In particular, .

The goal in regression is to minimize the empirical error of the network on the training data 
sample , where . This empirical error is

where  is the vector of all network weights. Some mathematical concernings about this 
function:

 is a continuous function if  is so.
 is differentiable if  is so.

 is usually of class .
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If we want to apply, for example, gradient descent, we need to compute the partial derivative of 
the error w.r.t. every weight. This, as you may already know, is called the gradient vector,

There exists a reasonably efficient algorithm for computing this gradient vector: the 
backpropagation algorithm. But, before we get to this, let us first define some redundant 
notation that will ease computations: 

First of all, we consider a MLP where, for notational simplicity, we define:

Also, note that  is the sum of the (independent) errors for every I/O example :

Therefore,

As we are using the gradient descent method, the updating formula for the weights is:

Please note that there are better methods than gradient descent, albeit this is a fair starting 
point.

Now, suppose we present  to the network and compute all the neuron's outputs ; this is 

known as forward propagation. Now,

where we have defined . Note that, for , this  is exactly the  from the 

Delta Rule for single-layer ANN training. The algorithm to update the weights is the following:

BACKPROPAGATION ALGORITHM (BPA):

set initial values for the weights .

repeat:

for  in 

Forward step: present  to the network and compute the outputs  of all 
units.

Backward step: compute the deltas  of all units, from  down to :

if  then 



if  then 

Set .

end

Update the weights as .

until convergence or max. epochs

We now set the activation functions to be the examples we have considered: if , then

and we obtain

Analogously for , where we have

Relation between backpropagation and order methods  

Let  represent a vector with all network weights at time . When training an MLP, the 
minimization of  using the BPA involves a sequence of weight iterates , where  
indicates iterations through , the so-called epochs.

A basic algorithm finds the next weights using the relation

The role of the BPA is to compute the elements of  at each iteration, recursively and 
rather efficiently. But how do we choose this parameter ? Let us present a theorem that shines 
little light onto this:

General convergence theorem. Let  be the eigenvalues of the Hessian matrix of the empirical 
error,  for a given , a matrix we assume to be positive definite. Then, if 

 for all ,  tends towards a local minimum of  as .

Observations on this theorem:

Recall that  is the Hessian matrix, with elements .

It is straightforward to see that  is a sufficiently small  (but it is not a necessary 

condition).
Too large values of  show fast convergence but a tendency to oscillate.
Too small values of  show slow convergence.

A generic (iterative) minimization algorithm would be:

Choose an initial point ; set .
Select a search direction .
Select a step size , and set .
Return to 2, unless a convergence criterion has been met.

Suppose that  we wish to minimize (we assume it is differentiable and analytic). A 
first order Taylor expansion around the current point  is:
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A simple minimization algorithm is to set  for , since

provided that  and  is small enough. Therefore we derive a learning rule:

We have recovered the gradient descent method. But, this Taylor expansion gives no clue on 
how to choose . In ANNs, there are two common strategies:

Use a constant small  or  a variable .

Perform a costly line search to find .

A perhaps better strategy than all of this is to use a second-order Taylor expansion around the 
current point :

where  is the Hessian matrix of  evaluated at . Provided  is positive definite, 
this time the minimum of  occurs at the  satisfying the zero-derivative condition:

This leads to the minimization step . This second-order 
method is known as a Newton method. Note that there is no need for a learning rate  here, 
sinze the inverse of the Hessian determines both the step size and the search direction. However, 
this method has some practical drawbacks:

It requires the Hessian to be positive definite, otherwise there is no unique minimum.
It requires the exact computation of the Hessian at every iteration.
It requires a matrix inversion at every iteration.
The knowledge of the local curvature provided by the Hessian is only useful very close to .

To avoid this drawbacks, we will replace the Hessian matrix with an approximation: let's see 
quasi-Newton methods.

In quasi-Newton methods, the inverse of the Hessian matrix is directly approximated, leading to

The most common variant is the BFGS method, suggested independently by Broyden, Fletcher, 
Goldfarb and Shanno. In BFGS, the positive definite estimate of the inverse Hessian does not 
require matrix inversion and uses only gradient information, supplied by the BPA:

A positive definite matrix  is chosen (usually, the identity matrix ).
The search direction is set to .
A line search is performed along this direction to find .

.
 is set, according to some conditions:



  softmax entropy linout

Classification FALSE TRUE FALSE

Classification TRUE FALSE FALSE

Regression FALSE FALSE TRUE

We impose a quasi-Newton condition:  has to satisfy the secant equation,

If we define  and , the secant equation is . 
Then, the approximation of the Hessian is updated by summing two matrices,  and , of rank 
one. As we want to maintain the positive definiteness of , we can choose 

. If we impose the secant equation and choose , we can 
obtain

Finally, substituting  in the formula for , we can set it to be

Tricks of the trade: sensible choices when implementing and
training MLPs

 

First of all, let us present the R function nnet :

This function fits single-hidden-layer neural networks, using the following parameters:

x  as the inputs
y  as the targets
weights  as an optional weights vector for the inputs, in case we want to give more 
importance to some of them
size  as the size of the hidden layer (i.e. the number of neurons)
Wts  as an optional initialization for the network weights
mask  is an optional bitmask to interpret which variables to take into account in the inputs
linout , entropy  and softmax  are three boolean parameters that can be set to true (only 
one at once) to train the network for the following purposes:

skip  lets us say if there are any connections from the input directly to the output layer
decay  is a regularization parameter
The other parameters can be easily understood

The output layer of a feed-forward neural network is schematized like this:

nnet(x, y, weights, size, Wts, mask,

     linout = FALSE, entropy = FALSE, softmax = FALSE,

     censored = FALSE, skip = FALSE, rang = 0.7, decay = 0,

     maxit = 100, Hess = FALSE, trace = TRUE, MaxNWts = 1000,

     abstol = 1.0e-4, reltol = 1.0e-8, ...)
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number of
neurons

activation
function

Classification 
1 logistic

Classification 
softmax

Regression identity

Given that  is the th component of the function to learn.

On-line vs. Batch learning:

On-line training is much faster, but the notion of convergence is unexistent. Even though, it is 
much faster than batch, particularly in large redundant datasets, and often results in better 
solutions. It can also track changes in the data.

Batch training, on the other hand, is much better understood as the notion of convergence does 
exist. It can be accelerated using second-order information, and it is not sensitive to the ordering 
of the training examples, which on-line learning is.

As of today, we call mini-batches (different) subsets of training observations used in consecutive 
epochs.

Activation function: It is known experimentally that an MLP trains much faster (as in, reaches an 
optimum in less iterations) if the activation function is anti-symmetric, . This is the 
case for the .

Target values: these should not be the asymptotic values of the activation function, but they 
should leave a margin. For example, in a two class problem, it is better to encode class 0 as 0.05 
and class 1 as 0.95 than to encode them as 0 and 1.

Input values: these should be preprocessed so that:

their mean value is zero and their standard deviation is 1 (standardized)
they are uncorrelated (perhaps using PCA)

Initial weights: these should be small and zero-centered, to avoid initially driving the neurons 
into saturation.

Number of hidden neurons  

While the number of inputs and outputs are dictated by the problem, the number of hidden 
neurons is not directly related to the application domain. This largely remains an unsolved 
problem.

A small number may not be sufficient and provoke underfitting of the model.
A large number may be too much and provoke overfitting of the model.

There exist many methods to set this number: constructive (for example, cascade correlation), 
pruning or destructive (for example, optimal brain damage), golden searches, ...

But, arguably a good and recommendable method, as it is more principled and arguably faster, is 
to use a large number (to overfit the model) and regularize the network. In nnet , we set the 
decay parameter and we can then perform cross-validation on it. There's more on ANN 
regularization and neuron dropout in the articles  directory of this repository.
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So, there are two simple and common ways to find the best single-hidden-layer network 
architecture:

Explore different number of hidden units, without regularization.
Fix a large number of hidden units and explore different regularization values.

What should not be done is both at once. It is usually a waste of computing resources.



9. Artificial Neural Networks (II): RBF Networks  

Introduction  

RBFs have their roots at exact function interpolation in mathematics. Its formulation as a single-
hidden-layer neural network came later. In a RBF model, the output of a neuron is determined by 
the distance between the input and the neuron's parameter vector, called its center or 
prototype. This latter fact has two important consequences:

1. It allows to give a precise interpretation to the network output: it will be a linear 
combination of similarities. This similarities will be calculated from the distances using the 
activation function.

2. It allows to design training algorithms other than BPA, which will be de-coupled, meaning 
there will be different ways for establishing the parameters of the hidden layer (non-linear 
part) and the output layer (linear part).

But what is exact function interpolation? The setting is the following: we have a set of data 
points  who all live in , and a set of real numbers . Given this, we want a function 

 such that

In our case, we will express  as a combination of basis functions like the following:

Each data point  acts as a prototype. This combination will be linear with respect to the basis 
functions:

which we will force to be exact for all the data points: . The function  is any norm 
in , and most often an Euclidean norm (a norm heir of a scalar product). Because of the norm, 
the  are functions that exhibit radial contours of constant value centered at the data points 

. In matrix notation,

Note that  is a symmetric matrix, as . Assuming that this matrix is non-
singular,  can be found as . This can be done, for example, using  
decomposition. There exist some sufficient conditions on  as to make sure that  is invertible, 
known as Micchelli's theorem. These sufficient conditions include:

 (Gaussian RBF)

If the interpolation problem has image in  (i.e., ), the generalization is straightforward:
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that we will force to be exact for all the data points: . This problem leads to

solved again by simple matrix inversion as .

Regularization  

Very often, in Machine Learning, the exact function interpolation setting is not attractive at all:

High number of interpolation points  means complex and unstable solutions.
The outputs  depend stochastically on the inputs . So, if we have exact solutions, we 
will be victims of overfitting.
The interpolation matrix  can be singular or ill-conditioned.
The inversion of  grows as . For symmetric positive definite matrices, Cholesky 

decomposition takes some  steps.

We are in need of a tighter control of complexity of our solution. Enter regularization.

From previous lectures we know that regularization penalizes the size of the weight matrix,

which results in ; the value of  is proportional to the amount of noise 
in the data. Another way of obtaining much simpler solutions is to use a subset of the data 
points to center the basis functions; more generally, they can be centered at a very carefully 
selected set of points in . With these two modifications (regularization and lowering the 
number of centers), we can get into RBF networks.

RBF networks  

The so-called RBf network is of the form:

which is a two-layer neural network:

The first (hidden) layer of  neurons computes the basis functions  centered at 
the vectors .
A constant basis function  compensates for the difference between the mean 
values of the output and the targets.

A very popular choice for the  is a simple Gaussian:

The new matrix  is sometimes known as the design matrix; now the weight matrix is
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If the original  matrix was non-singular, then the matrix  is also non-

singular (this is a very important result). Note that this solution is not regularized: if we do 
regularize it, we get that

RBF network training is typically performed in a decoupled way:

1. The first stage finds  using a clustering algorithm such as k-means.

2. The second stage finds  by any of the usual (linear) methods:

Solution using the Moore-Penrose pseudo-inverse (via the SVD), for regression.
Solution using IRLS (logistic regression), for binary classification.



10. Ensemble methods: Random Forests  

Ensemble methods are learning methods that learn by training a number of better-than-
chance individual learners and then combine their predictions. This methods have a number of 
advantages:

They provide more accurate models by combining the output of multiple local "experts".
A complex problem can be decomposed into multiple sub-problems that are easier to 
understand and solve (divide-and-conquer).
We often train many models and feel we can get more by combining a number of them. In 
this way, computational efforts are not wasted.

We should use ensemble learning methods when we can design better-than-chance individual 
learners that are independent from each other. How do we combine the multiple individual 
outputs of each learner to get a unique answer?

For the classification task, we use plurality voting: the class that has the most votes is the 
answer.
For the regression task, we average all the answers (usually with the arithmetic mean).

Regression: call  the ensemble,  the th individual learner, ; fix an input vector  
and let , where  is the function we want to learn:

1. The expected MSE for a randomly chosen individual learner is:

2. The expected MSE for the ensemble is:

Using Cauchy-Schwarz inequality, we can prove that

In particular, if the individual learners are independent, the reduction in expected error would be 
. In practice this is not the case, because the individual learners are normally trained out of the 

same data. Thus, they will tend to have correlated errors, and then the improvement will be 
smaller.

Classification: to ease the problem, let us assume the following:

The number of classifiers  is odd and we have   class labels.
Each classifier gives the correct class with probability  for any .
The classifier outputs are independent.

Then, the majority vote will give an accurate class label if at least  classifiers give correct 
answers. The majority ( ) of votes is necessary and sufficient for a correct decision in the 
case of , and is a sufficient condition (but not a necessary one) for . Thus, the real 
accuracy of an ensemble using plurality when  could be greater than the majority vote 
accuracy.

Consider . The accuracy of the ensemble is:
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The Condorcet Jury Theorem states that:

1. If , then  is monotonically increasing and  as .
2. If , then  is monotonically decreasing and  as .

3. If , then  for any .

CART algorithm

The CART (Classification And Regression Tree) algorithm generates a classification tree using the 
Gini score Gain: how often a randomly chosen example would be incorrectly labeled if it were 
labeled according to the empirical probability distribution of the classes. Mathematically, the Gini 
score is:

being  the fraction of examples in  labeled with class . Note that if a variable completely 
characterizes the class (perfectly separates  into the labeled classes), then 

, which is a "pure" scenario. If the probability distribution is uniform, then 
the Gini score achieves its maximum value, .

The Gini Gain of a discrete variable  is an impurity-based criterion that measures the 
divergence between probability distributions of the class labels. It is mathematically calculated as

assuming  are the elements of  with value . If  is a continuous variable, we sort the data 
rows and bin-split: we calculate the Gini score for the binary question "do the elements have a 
value greater than ?", with , for . In this way, 

we get a binary tree.

CART can also build regression trees, albeit it does not use the Gini score for that matter, but tries 
to maximize the RSS gain (Residual Sum of Squares) at each step. In this sense, both 
classification and regression trees built by CART follow a greedy algorithm.

Methods for constructing ensembles  

We want to make the individual learners in the ensemble be the least correlated possible. There 
have been a lot of ways proposed to do this, such as:

Subsampling the training examples
Manipulating the features
Manipulating the targets: for example, make each individual learner be an expert of 
classificating observations in a particular class.
Changing the learning parameters
...

Or a combination of the above. We will delve into subsampling of the training examples. The 
most common way to do this is by Bootstrap Resampling.

Bootstrap Resampling  
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Assuming we have a data set , we draw bootstrap resamples 
 of size  by sampling  with replacement and then fit a model to each of the . A 

statistic  can be estimated in the usual ways. For example,

are the mean and variance of the bootstrap distribution of , and . An estimation 
for the bias of  is .

If we want to subsample the training set, we might use a method created by Leo Breiman 
(1996) called Bagging (Bootstrap aggregating): this creates an ensemble by training individual 
classifiers on bootstrap resamples of the training set. The procedure is the following:

1. Generate a bootstrap sample from a sample of size  (  independent draws with 
replacement).

2. Train a predictor  on every bootstrap resample .
3. Repeat the process until you have  resamples and predictors.

What is the expected size of a bootstrap resample? Well, in a data set with  examples, each has 
a probability of not being chosen over all the  choosings of

so the probability of being chosen at least once is

If ,

The perturbation in the training set due to bootstrap resampling causes different methods to be 
built, particularly if the classifier is unstable. A modelling method is unstable if a small change in 
the training data (e.g., order of presentation, addition or deletion of data) can lead to a radically 
different model. This is typical of overfit models: they have a low bias and a high variance. 
Examples of these include decision trees and neural networks. Using the bagging procedure, 
we can dramatically reduce the variance of unstable methods of the same type, leading to 
improved prediction capabilities, at the price of keeping or increasing the bias (although not 
much).

Now, we can see that for bagging we do not need new data to estimate the prediction error of a 
model. We can do so by calculating what's called the Out-of-bag error (OOB). To calculate this, 
we use data that is not in the bootstrap resamples: define

 as the indicator function of boolean condition .
 as the set of indices of the resamples that do not contain observation ,

 as the model fitted to .

Then, the OOB error (validation error) is calculated using



Similarly, the resubstitution (aka training) error is estimated as:

where . The 0.632-bootstrap estimate is defined by:

Intuitively, this pulls the OOB bootstrap estimate down toward the training error, thereby 
reducing its likely upward bias.

Random Forests  

Random Forests (Breiman, 2001) are an ensemble method similar to bagging, where the 
individual learners are decision trees, with additional randomization:

We first generate bootstrap resamples an build a tree for each one. But, the trees are built in 
a more random fashion than normal decision trees:

Their diversity is increased (they are decorrelated) by the following procedure: every 
time a split is considered in a tree (an internal node), a subset of  predictors is 
randomly chosen from the whole predictor pool. Then, the split is only allowed to use 
one predictor of those  (the best one in terms of Gini gain). The default values are  

for classification and  for regression; these are due to L. Breiman also. If we used 
, we would be directly using bagging.

So, we have two basic hyperparameters: , the number of trees, and , the number of local 
features chosen at each split of every tree; both can be optimized via the out-of-bag error. 
Construction of the random forest is fast, since just a few features are explored per tree.

Random Forests usually outperform both the individual predictors and direct bagging. They can 
be also used to estimate variable relevance:

For each tree, the OOB prediction error is computed.

Then again after permuting each predictor variable.

The difference between the two is averaged over all trees, and normalized by its standard 
deviation:

.

If we have a probabilistic classifier, instead of bagging we could average the probabilities for each 
class in an ensemble, and then assign the class with the highest probability.
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