
Machine Learning 1

Machine Learning 1
1. Introduction to Machine Learning

Useful probability and statistics facts
Inductive bias
Formulation of ML

Prediction vs. inference
Common Tasks

Setting up the tasks
Optimization view
Statistics view

General form of a linear model
On data pre-processing

2. Linear Data Visualization
Dimensionality reduction
Principal Components Analysis
Fisher's Discriminant Analysis

Counterparts
3. Theory for regression and linear models (I).

The regression framework
Bias-Variance analysis

4. Regression theory and linear regression models (II)
Quality of the fit
Leaping forward: basis functions
Singular Value Decomposition

SVD for least squares
Regularized least squares
LASSO Regression
Conclusions

5. Classification theory and linear classification models (I). Bayesian decision theory.
Introduction: Bayes' formula
Decision rules

The Bayes classifier
The notion of risk
0/1 losses
Discriminant functions
The Gaussian Distribution

Properties
6. Classification theory and linear classification models (II).

Generative Bayesian classifiers
Discriminant functions for the Gaussian density
A numerical example
Computations in practice
Discussion
Regularized Discriminant Analysis
Pros & cons

The Naive-Bayes classifier
Extensions
Null empirical probabilities

The kNN classifier
7. Classification theory and linear classification models (III).

Discriminative classifiers
Maximum Likelihood (ML) framework (I)

af://n0

Generalized Linear Methods
Logistic regression

Interpretation of the model
Parameter obtaining
Newton-Raphson
Deviance and AIC
Interpreting the coefficients

Poisson Regression
Maximum Likelihood framework (II)

8. Artificial Neural Networks (I): The Multilayer Perceptron (MLP)
How to train a single layer ANN: the Delta Rule
Towards non-linear models
Error functions for classification
Training MLPs: An introduction to the backpropagation algorithm for regression

Relation between backpropagation and order methods
Tricks of the trade: sensible choices when implementing and training MLPs

Number of hidden neurons
9. Artificial Neural Networks (II): RBF Networks

Introduction
Regularization
RBF networks

10. Ensemble methods: Random Forests
Methods for constructing ensembles

Bootstrap Resampling
Random Forests

1. Introduction to Machine Learning

Machine learning is a field that lies at the intersection of statistics, probability, computer science,
and optimization. The main goal is to explore automatic methods for inferring models from
data (for example: finding structure, making predictions).

Examples of learning tasks:

SUPERVISED LEARNING: uses labeled data.

Classification: predicting a class or category to each example; note multi-label,
probabilistic generalizations.
Regression: predicting a real value for each example; note multi-variable
generalization.

UNSUPERVISED LEARNING: does not use or have data labels.

Clustering: discovering homogeneous groups (clusters) in data.
Dimensionality reduction: finding lower-dimensional data representations.
Density estimation: estimating the probabilistic mechanism that generates data.
Novelty detection: finding anomalous/novel/outlying data.

SEMI-SUPERVISED LEARNING: uses partly labeled data.

Ranking: ordering examples according to some criterion.
Reinforcement: delayed rewarding.

TRANSFER LEARNING: learning in a new task through the transfer of knowledge from a
related task that has already been learned.

Useful probability and statistics facts

Central Limit Theorem:

af://n3
af://n34

If are independent identically distributed random variables, with and
, then the sample mean

 approaches a normal distribution as .

Product rule:

If have a joint probability distribution , then we can factorize the
distribution as the product

Bayes Theorem:

Bayes formula for densities:

In a data analysis context, is a parameter vector and the following equality holds:

 This can also be expressed loosely as

 where is the data. This expression gives rise to the notions of likelihood, prior, posterior,
and unconditional (expected likelihood) distributions:

: prior probability, confidence in before observing .
: likelihood, probability of observing if parameters are .

: expected likelihood of observing data , also unconditional.
: posterior probability, confidence in after observing .

Conjugacy:

Definition: Suppose a prior distribution belongs to a class of parametrized
distributions . Then the distribution is said to be conjugate with respect to a likelihood

 if the posterior distribution .

Remember that For example, Gaussian is conjugate to
Gaussian, and Beta is conjugate to Binomial.

Using the posterior:

Inductive bias

Example: complete the following series:

Answer 1: 132 (model 1:)

Answer 2: 10 (model 2:)

How can we rule out the more complex model?

1. Supply more training data:

2. Regularize: add penalty to higher-order terms.

3. Reduce the hypothesis space; for example, restrict to quadratic models.

So, the conclusions are this: based only on training data , there is no means of choosing which
function is better (generalitzation is not guaranteed). Thus, we must add control to the fitting
ability of our methods (complexity control).

af://n76

Formulation of ML

 are the measured variables, are the unmeasured ones, is the true function and , which
would be , is the modeled function.

Prediction vs. inference

Prediction: produce a good estimate for the predicted variable.

Inference:

1. Which predictors actually affect the target variable?
2. How strong are these dependencies?
3. Are these relationships positive or negative?

Common Tasks

Regression: The goal is to predict some quantitative outcome subject to probabilistic
uncertainty.
Classification: The goal is to obtain a model based on available training data (known
examples) with high classification accuracy on unseen unknown examples (test data), i.e.
achieving good generalization.
Clustering: The goal is to find homogeneous groups of data and set them apart accordingly.
Looks like a very different task from regression or classification, but it's both of them with
some added difficulty: it has an inherent large subjectivity.

Why are these tasks stochastic?

We have a (complete) input data object and an output data object . The true relationship
is , that is . When we measure data about , we measure only the
portion of the input variables. Therefore, the relation between and becomes stochastic.

Setting up the tasks

There are (at least) two ways of setting up these tasks formally:

Optimization view

true error of training error of + complexity of (empirical risk + regularizer)

 is called the loss/error function.

af://n92
af://n95
af://n105
af://n115
af://n117

Statistics view

Use Bayes' formula to compute and choose one according to this (posterior)
distribution.

Many times these two views can yield the same results (which is good!). An example would be
LSQ MaxLik+Gaussian.

The most general description of the data generation mechanism is in terms of the pdf in
the joint input-output space: this is the key to generalization.

Some techniques use , others do not. The important pdf is . Discriminative methods
use only , while generative methods use the joint pdf .

So, what is a Machine Learning algorithm/technique?

A ML algorithm gets a dataset and returns a model of (a representation of that either
gives structure to or that allows to make predictions on unseen observations), together with an
estimation of the model quality. The algorithm itself typically determines the model space and
the loss function .

And why are linear models so nice?

We will begin our analyses with linear models and techniques. A model is linear when, up to an
invertible mapping, it is a linear function of its parameters; is linear when is depends
linearly on , but we do not say anything about . For example, is
linear. A linear model:

Is analytically tractable: we have closed-form solutions or fast convergent iterative
methods for the solution.
Has a unique solution: there are no local optima.
Is highly interpretable.
Is amenable to inference: we can ask (and answer) questions about the importance and
weight on the target of the different variables.
Has user-defined fitting ability, via the basis functions.
Is capable of being regularized: complicated models can be penalized.

General form of a linear model

A linear model has a general expression as

The functions are called basis functions (they constitute a feature map) and are non-linear wrt
. is a strictly monotonic function: in Neural Networks, this is called an activation function.

On data pre-processing

Each problem requires a different approach in what concerns data cleaning and preparation. This
pre-processing procedure is very important because it can have a deep impact on performance;
it can easily take us a significant part of the time. So, the important things to take into account on
data pre-processing are:

Treatment of missing, anomalous, and incoherent or incorrect values.

af://n121
af://n144
af://n148

Coding of non-continuous or non-ordered variables.
Possible elimination of irrelevant or redundant variables (feature selection).
Creation of new variables that can be useful (feature extraction).
Normalization of the variables (standardization).
Transformations of the variables (for example, corrections of serious skewness and/or
kurtosis)

Non-standard data (images, audio, text...) may need completely ad hoc treatments.

2. Linear Data Visualization

Dimensionality reduction

There are two main goals associated to these techniques:

Signal representation: the goal is to represent the data accurately in a lower-dimensional
space.
Signal classification: the goal is to enhance the class-discriminatory information in the
lower-dimensional space.

Unfortunately, there is no systematic way to generate non-linear transforms, so we will focus on
linear methods for feature extraction:

PCA: Principal Components Analysis.
FDA/LDA: Fisher's Discriminant Analysis.
ICA: Independent Components Analysis.

Principal Components Analysis

This feature extraction method is explained in the file ../AD/AD.pdf .

Fisher's Discriminant Analysis

FDA is a technique for dimensionality reduction, supervised classification, feature
extraction and data visualization.

Idea: projection of the data onto a lower dimensional linear space, such that the separability of
projected data is maximized.

Fisher's idea is to regard dot product as the projection of some from classes or ,
via a projection vector : . In order to find a good projection vector, we need to
define a measure of separation between the projections:

where is the number of examples on every class. We then choose to maximize the
squared distance between the projected means,

However, the distance between the projected means is not a very good measure since it does not
take into account the dispersion (scatter) within the classes. The problem is that the covariance
matrices for each class are far from being diagonal. We actually want to look for the projection
where examples from the same class are projected very close to one another and the projected
means are as far apart as possible:

af://n165
af://n166
af://n181
af://n183

The solution (proposed by R. Fisher) is to maximize a function that represents the difference
between the means, normalized by a measure of the within-class scatter:

1. a class we define the scatter as

2. The total scatter is .
3. Fisher's idea was to maximize the following function:

It can be shown that can be rewritten as:

where

 is the between-class scatter matrix (rank 1).
 is the within-class

scatter matrix.

To find the maximum of we derive and equal to zero,

and upon solving we arrive at the following generalized eigenvalue problem:

solving it yields known as Fisher's Linear Discriminant (1936), although it

is not a discriminant but a specific choice for projection down to one dimension.

FDA generalizes very gracefully for class problems: the only restriction is that the maximum
number of projection directions is . FDA can also be derived as the Maximum Likelihood
result for the case of Gaussian class-conditional densities with equal covariance matrices; in this
case, it is known as LDA.

WARNING! FDA is able to extract a maximum of projection directions, maybe insufficient
for complex data. PCA is able to extract projection directions, but it is not clear how many are
necessary.

Counterparts

When will FDA presumably fail? If the classes are far from Gaussian, the FDA projections will
not be able to preserve any complex structure; for an example, this image:

FDA will also fail when the discriminatory information is not in the mean but rather in the
variance of the data (e.g., if); for example,

af://n219

3. Theory for regression and linear models (I).

The regression framework

Given data , where ,

Statistics: estimation of a continuous random variable conditioned on a random vector
.
Mathematics: estimation of a real function based on a finite number of noisy examples

.

The departing statistical setting is ; a model is any approximation of . We
assume are iid random variables such that and , and that and

 are independent variables.

The risk of a model is

where is a suitable loss function that satisfies:

 (not necessarily in the other direction)
 does not increase when decreases.

 is closely related to the distribution of the noise model .

Example: if we assume for example that , using a maximum likelihood argument
it can be shown that the right loss function is the square error:

The risk is therefore

If we enjoy complete freedom to choose , the solution is:

known as the regression function. Since , we can alternatively express the regression
setting by stating that is a continuous random variable such that .

Claim:

Proof:

In a practical setting, we don't know . Instead, we have a finite i.i.d. data sample of
labeled observations , where . Then, intuition tells us to
solve for

af://n225
af://n226

This is equivalent to minimizing the risk function; we'll see this in the next part. For now, we must
impose restrictions on the possible solutions , this is, we must restrict the search space to a
specific class of functions .

We can compute an approximation to the true risk, called the empirical risk, by averaging the
loss function on the available data :

This quantity is also known as the apparent error. The Empirical Risk Minimization (ERM)
principle stats that a learning algorithm should choose a hypothesis (model) which minimizes
the empirical risk among a predefined class of functions :

The quantity is known as the training error. In theoretical ML, we are very much
interested in:

How this error fluctuates as a function of the data .
How far this error is from the true error, this is, to bound ; at the very least,
to bound .
How far this error is from the best possible error, this is, to bound ; at the
very least, to bound .

Bias-Variance analysis

Recall the assumption that . In this case, using the square error, the risk can be
decomposed as:

where is the regression function. Therefore, we arrive at . We can now
forget about and the risk and instead aim at minimizing the :

A learning algorithm for regression is a procedure that, given data and the search space ,
outputs a model that aims at minimizing .

Consider now one particular ; different will produce different and therefore different
predictions . Let us concentrate on the quantity : we wish to eliminate
the dependence on . Therefore, we investigate its expected value, , taking
over all possible of size . If we develop a little more their formulas,

We can interpret these summands as , and
. Then, the formula is more clearly stated as

af://n270

and the risk can be expressed as a sum of three summands:

The derivation above depends on a particular point , so let us put it all back in place within
their integrals:

In general, an underfit model will have a big bias, while an overfit model will have a high
variance. The abilityi to fit has a name: it's called the complexity of the function class. Both
models that are more or less complex than needed will tend to have large prediction errors. In
the former, this will be dominated by the variance term, while in the latter, it will be dominated
by the (square) bias term.

4. Regression theory and linear regression models
(II)

Our departing statistical model still is

where is a continuous rv such that and . Let's assume again that we
further model , and:

with and . Suppose we have an iid sample of
labeled observations , where . Therefore, our statistical
model is or:

with unknown parameters . Put and the

matrix of the . Define the likelihood as . Let us maximize the log-likelihood:

If we derive this wrt and , and set equal to zero, we get:

Therefore, we can calculate the estimates for both parameters:

Note that , which is a biased estimator for . An unbiased estimator is

It's also known that is an unbiased estimator of and that . All of this

implies that .

af://n286

The matrix is known as the Moore-Penrose pseudo-inverse of . It is the
generalization of the notion of an inverse matrix to non-square matrices. It has the property that

, although in general . However, both are symmetric.

Theorem. Let , with . If the column vectors of are linearly independent, i.e., if
, then:

1. The matrix is symmetric and positive definite. In particular, it is non-singular.
2. The least squares problem

 has a unique solution.

3. This solution can be found solving the so-called Gauss' normal equations,

 for .

Quality of the fit

In statistics, is called the deviance.
In ML, this quality measure is the square error:

A much better quantity to report is the ,

In statistics, is the proportion of the target variability explained by the model.

Leaping forward: basis functions

Recall that a model is linear if up to an invertible function its parameters play a linear role in the
model. For example,

is a polynomial on , but also a linear model on .

A simple but powerful idea is the introduction of basis functions:

where . This is still a linear
model. Define as the vector of targets, and as the matrix of the

:

af://n316
af://n328

So, let us maximize the new log-likelihood: the Gauss' normal equations are

and their solution is

Singular Value Decomposition

The direct computation of the pseudo-inverse of has two major drawbacks:

When is large, is a large matrix; then, the computation of the
required inverse can be costly.

If is singular, or close to, then the required inverse can be impossible, or
numerically delicate.

Theorem. Every matrix can be expressed as , with ,
, diagonal. The columns of are the eigenvectors of , and the columns of
are the eigenvectors of .

Let . Then exactly elements in the diagonal of are strictly
positive; the remaining elements are null. These are called the singular values and
correspond to the square roots of the positive eigenvalues of (same as).

Sometimes an economy size decomposition is delivered: If is with , then only
the first columns of are given and is .

SVD for least squares

Given the least squares problem

the solution can be obtained with the SVD as:

Compute the economy size SVD of .
Solve for as , where only the are considered.

Regularized least squares

The maximum likelihood framework can yield unstable parameter estimates, specially when

the explanatory variables are highly correlated;
there is an insufficient number of observations relative to the number of predictors
(basis functions or dimensions).

In the context of regression with Gaussian noise (square error), it is quite common to penalize the
parameter vector. Define the penalized empirical error as:

af://n340
af://n350
af://n359

If we set its derivative wrt equal to zero

we solve for and we get

This is known as Tikhonov or regularization in ML. Perhaps it's best known as ridge
regression in statistics, where it's usually explained as a "penalized log-likelihood". This can also
be derived from Bayesian statistics arguments. Tikhonov regularization has some advantages:

Pushing the length of the parameter vector to allows the fit to be under explicit
control with the regularization parameter .
The matrix is positive semi-definite; therefore is guaranteed to be positive
definite (hence non-singular), for all .

We change names of , for it is fancier. If we assume that the , then

 and then, observe that is the mean square error,

This is all nice, but how do we control the fit explicitly?

Regularization allows the specification of models that are more complex than needed
because it limits the effective complexity.
Instead of trial-and-error on complexity, we can set a large complexitr and adjust the .

And how do we set the value of ? Using a technique called Leaving-one-out cross validation
(LOOCV), because

In this case, is a very forgiving parameter; we usually perform a log search.
There is a closed efficient formula for the LOOCV for linear models.

To get to the best model we can, we follow this steps:

1. Choose a (large) set of values .

2. For every ,

1. Solve for .

2. Compute the hat matrix .
3. Compute the LOOCV of in as

3. Choose the model with the lowest LOOCV.

A very popular method is Generalized Cross-Validation (GCV):

which is a more stable computation for the LOOCV. Note that is needed to compute both
and .

LASSO Regression

The LASSO (Least Absolute Shrinkage and Selection Operator) regression is regularized
linear regression. The choice for the regularizer is and we get:

This turns out to be equivalent to

In ridge regression, as the penalty is increased, all coefficients are reduced while still remaining
non-zero. In the LASSO regression, increasing the penalty causes more and more of the
coefficients to be driven to zero. As the dimension increases, the multidimensional spheres
have an increasing number of corners, and so it is highly likely that some coefficients will be set
equal to zero. Hence, the LASSO regression model performs shrinkage and therefore, feature
selection.

The LASSO loss function is no longer quadratic, but it is still convex. The minimization problem
tied to LASSO regression is a special quadratic programming (QP) problem, for which the Least
Angle Regression (LARS) procedure is used. It exploits the special structure of the problem, and
provides an efficient way to compute the solutions for all possible values of (the
regularization path).

Conclusions

We have introduced linear models as linear combinations of non-linear basis functions (BF):

ADVANTAGES:

We can represent non-linear functions of the data using linear fitting techniques; we have
the freedom to choose the form of the BFs.
The fit can be under tight explicit control by regularization.
The computations can be very efficient, no need to refit for LOOCV.
Interpretability of the model is rather high.

LIMITATIONS: the most important weak point is the BFs.

Many interesting BFs scale very poorly with dimension (polynomials, Fourier series, splines,
...)
Our BFs are not flexible; they are data-independent.
As a consequence, their number may be very high, which in turn leads to unstability
(because of low significance of the coefficients).

af://n413
af://n420

The solution is to develop basis functions with parameters such that:

This BFs scale well with dimension (inner products, distances, ...)
They are data-dependent, because of the parameters.
As a consequence, their number might be much lower, and the coefficients will be
significant.
Unfortunately, the new parameters will play a non-linear role in the model: their
optimization is plagued with local optima.

5. Classification theory and linear classification
models (I). Bayesian decision theory.

Introduction: Bayes' formula

Discrete Random Variables. Let be a discrete r.v. with probability mass function (pmf) . We
use the shorthand notation to mean . Similarly, we write to mean

, etc, where

Let be the possible values that and can take,
respectively. Then, ,

Since , it follows that, for any

Continuous Random Variables. Let two continuous r.v. with pdfs and joint density
. We use the shorthand notation to mean , etc.

Therefore,

Observation. Mixed random variables.

Suppose is a continuous r.v. and is a discrete r.v. with values in . In this case,
 is a continuous r.v. and is a discrete r.v. Moreover,

Decision rules

We are interested in determining the class or category of objects of nature according to , a
discrete r.v. with values that represent the two possible classes. The prior probabilities
are . How should we classify objects?

Decision Rule 1. We don't measure any variable. We have no information other than "a new
object comes".

This rule classifies all objects into the same class; therefore, it will eventually classify an object
into the wrong class. Thus, the probability of error of this rule is

af://n452
af://n453
af://n467

This rule is useful only if or if . This is the optimum rule when
no information is measured.

Discrete feature measuring. Suppose now that is a discrete r.v. taking values in

 that measures a feature of objects. Now, is the

posterior probability that an object with measured feature belongs to class .
Moreover, .

Upon observing , the Bayes formula converts prior class probabilities into posterior
probabilities . How should we classify objects now?

Decision Rule 2. We now measure a feature of the object coming forth.

The probability of error for this rule is

This rule is known as the Bayes rule or classifier.

Lemma. For all , .

Proposition.

Proof:

Equality holds only if .

Continuous feature measuring. The next step is to consider a r.v. with pdf that
measures a continuous feature of an object. Let be the support of , i.e. .
In this setting, are the conditional densities of for every class.

Proposition.

Proof:

Equality holds only if .

The Bayes classifier

The Bayes classifier can be extended in two ways:

1. Consider a vector of continuous r.v. with pdf that
measures continuous features.

2. Consider a finite set of classes , a discrete r.v. with values , that represent the
possible classes ().

Therefore, we have new probabilities . The new Bayes rule says:

Decision rule.

The sets are called regions, and depend on the specific classifier. It is worth
noting they form a partition of the total space, which is in general thought of as or, in the
vector setting, .

We now want to see that the Bayes classifier is optimal in terms of probability of error. To do
this, let us assume a classifier with regions . Then,

So, if any other classifier has a smaller error, the Bayes classifier is optimal.

af://n492

The Bayes classifier can also have a rejection class (illustrated here for two classes); if we fix
,

For every feature vector we take one of three possible actions.

Consider a finite set of actions . For each , denote by the loss
for choosing when is known to be in . This is a simplified setting in which this loss does
not depend on .

Example: Let and let stand for "classify into class " for ; let
stand for "do not classify ". A possible set of losses is:

This example suggests that a decision not to classify is less costly than a misclassification.

The notion of risk

Definition. Conditional risk. For a given feature vector , define the conditional risk of an action
as:

Definition. Decision rule, Total risk. A decision rule is any function from the support of
the probability density function to the action set that assigns an action to every such
that . The total risk of a decision rule is

We are interested in the decision rule that minimizes the total risk. Consider the rule

You may recognize it as the Bayes rule. Given that this rule minimizes the argument of the
integral for every possible , it follows that the Bayes rule has the lowest possible risk. The value

 is called the Bayes risk and is the minimum risk possible in global terms.

0/1 losses

In many applications the 0/1 loss is used, usually in absence of more precise information:

Consider classes, and actions . Then, the conditional risk for each
action is

af://n514
af://n522

Discriminant functions

Functions of the form are a useful tool to build an abstract classifier. An object is
assigned to class when is the highest among the values . For example,

If is a discriminant function, then so is , for any strictly monotonic function . For two
classes, we can use a single discriminant function, called a dichotomizer:

1. Define
2. Assign to class if and to class if .

The Gaussian Distribution

A normally distributed variate random vector has a pdf like

where is the mean vector and is the real symmetric and positive definite

covariance matrix.

 and .
 and .

As , then are statistically independent . In general,
only holds.

The quantity is called the Mahalanobis distance. What is
behind the choice of a multivariate Gaussian distribution for a class?

We want to have a prototype object, which is modeled by the mean vector.
Also, the noise modeling is easy because in a multivariate Gaussian, this is modeled by the
covariance matrix.
Even though, it is very important to take into account that the number of parameters of the

multivariate Gaussian is , for dimension .

The surfaces of equal probability, are hyperellipsoids. The principal directions
or components (PC) of the hyperellipsoids are given by the eigenvectors of , which satisfy

, for . The lengths of the hyperellipsoids along these axes are proportional to
, the singular values associated with . Note that as is positive definite, all .

Properties

Simplified forms: if the are statistically independent, then , is
diagonal and the PCs are axis-aligned.
Analytical properties, for example, any moment can be expressed as a function of

 and .
Central limit theorem, the mean of i.i.d. random variables tends to a normal distribution,
as .
Linear transformation invariance, the distribution of a linear transformation of the
coordinate system remains normal.

af://n527
af://n542
af://n561
af://n571

6. Classification theory and linear classification
models (II).

Generative Bayesian classifiers

Discriminant functions for the Gaussian density

We showed that the Bayes rule minimizing the probability of error could be formulated in terms
of a family of discriminant functions:

When , this family can be reduced to very simple expressions. Using Bayes
rule and the natural logarithm, the discriminant function for class becomes

Erasing constant terms,

This expression is called a quadratic discriminant function, and the decision boundaries
 are general hyper-quadrics in dimensional space. The resulting classifier out of

the class of discriminant functions together with the decision rule is called Quadratic
Discriminant Analysis (QDA).

If we assume that all class-conditional distributions have the same covariance
matrix , after removing all terms that do not depend on or we get:

Reorganizing terms we obtain , where

This is because is a symmetric matrix for being the inverse of a symmetric matrix. These are
linear discriminant functions (linear in) and the decision boundaries are hyperplanes if
dimensional space.

If we further assume that all pairs are statistically independent, that is, is a
diagonal matrix, we get:

If we further assume that all have the same variance (for example, standardizing all
variables), that is , we get:

If we further assume that all classes have the same prior distribution, , we get:

af://n571
af://n572
af://n573

In all cases, we have a minimum-distance classifier in :

In the general case (some covariance matrices are different), the classifier uses a different
Mahalanobis distance (a fully-weighted Euclidean distance) from to each class. This is
called Quadratic Discriminant Analysis (QDA).
In case all covariance matrices are equal, the classifier uses the same Mahalanobis distance
from to all classes. This is called Linear Discriminant Analysis (LDA).
In case all covariance matrices are diagonal, the classifier uses a simply-weighted Euclidean
distance from to all classes.
In case all covarianve matrices are a multiple of the identity matrix, the classifier uses an
unweighted Euclidean distance from to all classes.

A numerical example

Derive a linear discriminant function for the two-class classification problem defined by the
following Gaussian class-conditional densities:

Solution: since all the are statistically independent () and have the same variance
, that is , we get:

Then we can build an optimal dichotomizer:

and the decision rule is

Substituting, , which results in

The prediction for the test example is , given that
.

Computations in practice

In practical situations, only an i.i.d. data sample is available. Let be the subset of
observations known to belong to class . Then is a partition of . We can use
unbiased estimates for the vector means and for the class priors:

If we know (or assume) that covariance matrices are different (we wish to use QDA):

af://n610
af://n622

Otherwise, if we know (of assume) that covariance matrices are equal (we wish to use LDA):

Discussion

Bayesian classifiers are optimal when the class-conditional densities and priors are known; the
methods are well-principled, fast and reliable. For Gaussian classes, we get a quadratic classifier

 QDA (if all covaraince matrices are equal, a linear classifier, LDA); using a specific distance
function corresponds to certain statistical assumptions:

If the class-conditional densities are far from the assumptions, the model will be poor.
Even if the class-conditional densities are Gaussian, the parameters should be reliably
estimated (particularly for QDA).
Once we use sample statistics instead of population parameters, we lose optimality.

The question whether these assumptions hold can rarely be answered in practice; in most cases
we are limited to posing and answering the question "does this classifier give satisfactory
predictions or not?".

Regularized Discriminant Analysis

If for some , QDA cannot be applied, because the class covariance matrix is
singular. If , neither QDA nor LDA can be used, because both and are singular.
These problems can be overcome by applying regularization:

where . LDA is and QDA is .

Pros & cons

Pros:

Adaptable to all class-conditional distributions (not only Gaussian), even with mixed
variables.
Very resistant to overfitting the data sample.
Accepts class priors and losses for misclasiffications.

Cons:

Assumption of Gaussianity may be far from true.
Needs sufficient examples epr class if we wish to use QDA.
Requires matrix inversions (costly or numerically delicate).

The Naive-Bayes classifier

We showed that the 0/1 loss Bayes rule minimizing the probability of error could be formulated
in terms of discriminant functions , for . We can expand the
conditional probability to be

and if we assume are pairwise independent given the class, this is equal to

af://n629
af://n639
af://n643
af://n660

Extensions

Multiplying numbers smaller than 1, we can easily get numeric errors in a computer, so we want
to ease the computations. To do this, we can numerically extend (and ease) the classifier by
taking logarithms as such

How do we deal with continuous variables? We have two options:

1. Assume a particular pdf for the variable and estimate its parameters from the data.
2. Discretize the variable and treat is as discrete.

Null empirical probabilities

In test examples it may happen that some variable has a value not present in the
sample used to create the classifier, hence and we are in trouble. One way
to avoid this kind of situations is to use the Laplace correction:

Here is the "weight" assigned to the prior probability and is the number of differents values
of variable .

The kNN classifier

Definition. Metric. Let be a set. A metric in is a two-parameter function
 satisfying the following properties :

1.
2.
3.

A pair is a metric space.

Decision rule. The 1NN technique. The 1NN technique classifies any in the same class of
the "nearest neighbour" of in , that is

Decision rule. The kNN technique. The kNN technique considers the "nearest neighbours"
of in and votes for the most represented class:

In this rule, ties may happen. These are broken randomly. There are no ties for two-class
problems and odd .

Theorem (Cover & Hart, 1965). Asymptotic analysis of the 1NN technique. Call the probability
of error of 1NN and be the Bayes error. Then, as ,

af://n665
af://n674
af://n678

In particular, for two-class problems,

7. Classification theory and linear classification
models (III).

Discriminative classifiers

Maximum Likelihood (ML) framework (I)

Generalized Linear Methods

Generalized linear models are a very general and classical technique for fitting linear models.
They are the genuine representatives of discriminative methods. The main difference between
discriminative and generative methods is that using generative methods, we can generate new
data from the parameter estimation we have previously done, while in discriminative methods
we neither can't or are interested in doing so.

These methods work for many target types:

Binary (two-class) and nominal (multi-class).
Proportions and counts.
Ordinal (ordered classes).
Continuous target variables.

They admit very general predictors. Categorical variables are binarized.

Definition. Generalized linear model. A GLM is a linear predictor of a convenient function of the
conditional expected value of the target variable. Mathematically,

This function is typically smooth (of class for some) and globally invertible. It's called
the link function. We optimize the and parameters directly, without any assumptions of the
distribution of the . The target variable rows are taken as independent and drawn from a
distribution of the exponential family: Poisson, Gaussian, Bernoulli, Gamma, ...

The modeler chooses a suitable distribution for given :

1. If we are predicting a real continuous value, we will usually use the Gaussian distribution;
hence, is the identity function. This is called linear regression.

2. If we are in a two-class problem, we will use the Bernoulli distribution, with link function
. This method is called logistic regression.

3. If we want to predict a counter, we will usually use the Poisson distribution, with link
function . This is called Poisson regression.

This generality comes at a cost: in general we need an iterative procedure for the optimization of
the and parameters. A popular procedure is to set it up as a Maximum Likelihood problem
and use a preferred numerical optimization method (e.g. Newton-Rhapson).

Logistic regression

We are in the case of binary classification (). We model the posterior probability for class
 as:

where is the logistic function. Obviously,

.

af://n698
af://n699
af://n700
af://n701
af://n726

The logistic function is a function . This function is a bijection, with inverse

for . This is called the logit function, and looks like this:

Each , where ,

Notice that . Hence, we are identifying with .

Interpretation of the model

The main thing to remember about logistic regression is that "The log of the odds is a linear
function of the predictors". Since , we have

Parameter obtaining

Suppose we have an i.i.d. sample of labeled observations , where
.

The first thing we notice is that we have parameters to fit. In the "equivalent" case of

generative methods (LDA), we had parameters. So, this cases scales better (linearly)
than LDA did (quadratically). We re-write , with

Now we see the obtaining of the parameters from a Maximum Likelihood perspective:

Now,

af://n737
af://n740

Therefore,

When we set the derivative of this expression equal to zero, we are not able to isolate the
parameter vector . Hence, we need an iterative method, such as Newton-Raphson.

Newton-Raphson

As the Maximum Likelihood of the logistic regression does not have a closed-form solution, we
iterate over to obtain a good enough approximation to the parameter vector :

All of this because

Here, is the data matrix of the , is a diagonal matrix such that , for
, and . When all of this is put into place, we are

left with the following algorithm, called Iterated Reweighted Least Squares (IRLS):

1. Initialize and , for . (This is the null model)

2. Iterate the following until convergence:

1. Update , where .

2. Update , for .

3. Update .
4. Update .

3. Return .

Deviance and AIC

In the context of GLM,

is called the deviance (in ML, this is the error). The null deviance is the deviance of the null
model, and the residual deviance is the deviance of the proposed model. We can also define, for
linear models, the Akaike Information Criterion, which is the deviance with a complexity
penalization, . Actually, this penalization is a rudimentary form of
regularization.

Interpreting the coefficients

af://n751
af://n773
af://n777

Define , so . Then, we can

interpret the coefficient in position using the following relation between odds:

Poisson Regression

In many statistical studies, one tries to relate a count to some scientific variables. When there is
no upper natural bound to this count, the logistic regression is not appropiate, and hence, the
Poisson regression appears as a good alternative. This model relies on the Poisson distribution,
a discrete distribution with probability mass function

We consider independent Poisson random variables with . We know
that . We have an i.i.d. sample of observations and a corresponding
sample , where each is drawn from . Our idea heare is to model as

, with link function . Then, the Poisson regression model is
, or .

If we want to estimate the parameter vector using maximum likelihood, we proceed like the
previous case for Logistic regression, and we arrive at

Again, this expression has no closed form solution for once we derive and set it equal to zero;
however, we can still use Newton-Raphson, because is a convex function.

Maximum Likelihood framework (II)

af://n781
af://n788

8. Artificial Neural Networks (I): The Multilayer
Perceptron (MLP)

An (artificial) neuron is an abstract computing unit that gets an input vector, combines this
vectors with a vector of local parameters (called weights) and sometimes with other local
information, and then outputs a scalar quantity. It's usually represented like this:

The output can be delivered as part of the input of another neuron or to the neuron itself (self
connection).

Reminder: a directed graph (DG) is a structure composed by a set of nodes and a set of labeled
directed segments that connect the nodes.

An artificial neutal network (ANN) is a parallel and distributed information-processing
structure that takes the form of a DG, where the nodes are neurons and the labels correspond to
the weights.

A layer is a collection of neurons:

Sharing a common input vector (usually computing the same function).
Not connected with one another.

The output layer in an ANN is the last in the direction of the arrows. All other layers are called
hidden. A hidden neuron is a neuron in a hidden layer. An ANN is recurrent if its graph contains
cycles; otherwise, it is a feed-forward network. A recurrent network represents a dynamical
system; a feed-forward network represents a single function.

The simplest choice of an ANN is a linear combination of the inputs:

This represents just a single neuron. Recall that we previously defined (in Chapter 1) a linear
model as a model that, up to an invertible map, is linear on its parameters. Then, this previously
defined ANN is a linear model. It can be extended to multiple outputs:

Now, this represents a layer of neurons. Finally, if we add a non-linearity to the output:

af://n790

This still represents a single neuron layer and a linear model, all performing the linear
combination and the computation of . Now, we compact the notation.

1. Define and . We now have:

2. Let the weight matrix gather all the weight vectors by columns. We introduce the

notation to mean that is applied component-wise. The network we now have
computes, then,

The activation function is often a sigmoidal one: this is defined as a function that satisfies:

Being differentiable.
Having a non-negative (or non-positive) bell-shaped first derivative.
Having horizontal asymptotes in .

The most commonly used sigmoidal functions are:

The logistic family:

The hyperbolic tangent family:

How to train a single layer ANN: the Delta Rule

We wish to fit to a set of learning examples , where
. In order to do this, we define the (empirical) mean-square error of the

network as

Let be a differentiable function; we wish to minimize it by making changes in its
variables. Then, the increment in each variable is proportional to the corresponding derivative:

, with

In our case, the function to be minimized is the empirical error and the variables are the weights
 of the network:

This is called the delta, and is called the net input. Then, combining the two
equations above,

af://n835

When is the indentity, we get the LMS Learning Rule:

This technique represents a linear regressor where the regression coefficients are estimated
iteratively. This is a form of learning, but it is not incremental: we need all the examples from
the beggining. This is also usually called batch learning.

We are so sure the iterations get to a minimum because the mean-square error function is
convex in : it defines a convex hyper-paraboloidal surface with a single global minimum .
The constant controls the stability and speed of convergence. If chosen sufficiently small, the
gradient descent procedure asymptotically converges towards , regardless of the initial vector

. A sufficient condition on is , where is the largest eigenvalue of the

input self-correlation matrix . In practice, one may use , since

.

In the on-line version of the delta rule, we also begin with arbitrary and apply:

At each step , the example is drawn at random from . It can be shown that if
 and , then converges to the global minimum in the mean

square sense:

One such procedure is to take , with initial .

Towards non-linear models

How could we obtain a model that is non-linear in the parameters (a non-linear model)? We
depart from the basic linear model:

where is a sigmoidal function. If we apply any non-linear function to the weights, we are just
transforming them into another set of weights, and the model is still linear of the parameters.
Then, suppose we apply non-linear functions to the input data:

This is a generalization of the previous case, which we can recover by setting and
, with .

Approach 1. Make a set of predefined functions. For example, and
polynomial fitting. Consider the problem of fitting the function

af://n853

to , which is a special case of linear regression, where the set of regressors is
. Therefore . The weights here can be estimated by standard

techniques (ordinary least squares).

What if we have a multivariate input ? The corresponding polynomial is:

The number of possible regressors grows like . So many regressors (while holding fixed)

causes increasing troubles for estimating parameters: it is mandatory to have more observations
than regressors (must be less than). Also, the statistical significance of the weights decreases
with and increases with .

Approach 2. Why not try to engineer adaptive regressors? By adapting the regressors to the
problem, it is reasonable to expect that we shall need a much smaller number of them for a
correct fit.

The basic neural network idea is to duplicate over and over the model:

where

with . With one duplication we have created another layer of neurons. It is
clear that we can play this game as many times as we want, further extending this to any number
of hidden layers we want. So, to summarize this:

We have a new set of regressors , which are adaptive via the
parameters (called the non-linear parameters).
Once the new regressors are fully specified (i.e., the parameters are estimated), the
remaining task is linear (via the paremeters).
What kind of network gives rise to this function if we keep duplicating? The Multilayer
Perceptron or MLP.
Under other choices for the regressors, other networks are obtained. For example, the
standard RBF (Radial Basis Functions) network with parameters :

Error functions for classification

In classification we model the posteriors . In two-class problems, we model by creating
an ANN with one output neuron () to represent and thus

.

Suppose we have a set of learning examples , where
(assume is i.i.d.). We take the convention that means and means

, to model:

af://n881

which is conveniently expressed as . This is a Bernoulli
distribution. Assuming an i.i.d. sample, the likelihood function is:

So, which error should we use? Let us define and minimize (again) the negative log-likelihood as
the error:

popularly known as cross-entropy. This is the error function we should use in binary
clasiffication.

The case for more than two classes, , is obtained analogously, though with a bit more
work. The error function for the multiclass classification problem turns out to be:

known as the Generalized Cross-Entropy.

Training MLPs: An introduction to the backpropagation
algorithm for regression

(adaptation to binary/multiclass classification)

A regression MLP of hidden layers is a function made up of pieces of
the form:

where, for every , is the matrix of weights connecting layers and

(is the weight of the th input of the th neuron in layer), is the number of neurons in

layer (its size) and is the th basis function in layer ,

with . In particular, .

The goal in regression is to minimize the empirical error of the network on the training data
sample , where . This empirical error is

where is the vector of all network weights. Some mathematical concernings about this
function:

 is a continuous function if is so.
 is differentiable if is so.

 is usually of class .

af://n893

If we want to apply, for example, gradient descent, we need to compute the partial derivative of
the error w.r.t. every weight. This, as you may already know, is called the gradient vector,

There exists a reasonably efficient algorithm for computing this gradient vector: the
backpropagation algorithm. But, before we get to this, let us first define some redundant
notation that will ease computations:

First of all, we consider a MLP where, for notational simplicity, we define:

Also, note that is the sum of the (independent) errors for every I/O example :

Therefore,

As we are using the gradient descent method, the updating formula for the weights is:

Please note that there are better methods than gradient descent, albeit this is a fair starting
point.

Now, suppose we present to the network and compute all the neuron's outputs ; this is

known as forward propagation. Now,

where we have defined . Note that, for , this is exactly the from the

Delta Rule for single-layer ANN training. The algorithm to update the weights is the following:

BACKPROPAGATION ALGORITHM (BPA):

set initial values for the weights .

repeat:

for in

Forward step: present to the network and compute the outputs of all
units.

Backward step: compute the deltas of all units, from down to :

if then

if then

Set .

end

Update the weights as .

until convergence or max. epochs

We now set the activation functions to be the examples we have considered: if , then

and we obtain

Analogously for , where we have

Relation between backpropagation and order methods

Let represent a vector with all network weights at time . When training an MLP, the
minimization of using the BPA involves a sequence of weight iterates , where
indicates iterations through , the so-called epochs.

A basic algorithm finds the next weights using the relation

The role of the BPA is to compute the elements of at each iteration, recursively and
rather efficiently. But how do we choose this parameter ? Let us present a theorem that shines
little light onto this:

General convergence theorem. Let be the eigenvalues of the Hessian matrix of the empirical
error, for a given , a matrix we assume to be positive definite. Then, if

 for all , tends towards a local minimum of as .

Observations on this theorem:

Recall that is the Hessian matrix, with elements .

It is straightforward to see that is a sufficiently small (but it is not a necessary

condition).
Too large values of show fast convergence but a tendency to oscillate.
Too small values of show slow convergence.

A generic (iterative) minimization algorithm would be:

Choose an initial point ; set .
Select a search direction .
Select a step size , and set .
Return to 2, unless a convergence criterion has been met.

Suppose that we wish to minimize (we assume it is differentiable and analytic). A
first order Taylor expansion around the current point is:

af://n962

A simple minimization algorithm is to set for , since

provided that and is small enough. Therefore we derive a learning rule:

We have recovered the gradient descent method. But, this Taylor expansion gives no clue on
how to choose . In ANNs, there are two common strategies:

Use a constant small or a variable .

Perform a costly line search to find .

A perhaps better strategy than all of this is to use a second-order Taylor expansion around the
current point :

where is the Hessian matrix of evaluated at . Provided is positive definite,
this time the minimum of occurs at the satisfying the zero-derivative condition:

This leads to the minimization step . This second-order
method is known as a Newton method. Note that there is no need for a learning rate here,
sinze the inverse of the Hessian determines both the step size and the search direction. However,
this method has some practical drawbacks:

It requires the Hessian to be positive definite, otherwise there is no unique minimum.
It requires the exact computation of the Hessian at every iteration.
It requires a matrix inversion at every iteration.
The knowledge of the local curvature provided by the Hessian is only useful very close to .

To avoid this drawbacks, we will replace the Hessian matrix with an approximation: let's see
quasi-Newton methods.

In quasi-Newton methods, the inverse of the Hessian matrix is directly approximated, leading to

The most common variant is the BFGS method, suggested independently by Broyden, Fletcher,
Goldfarb and Shanno. In BFGS, the positive definite estimate of the inverse Hessian does not
require matrix inversion and uses only gradient information, supplied by the BPA:

A positive definite matrix is chosen (usually, the identity matrix).
The search direction is set to .
A line search is performed along this direction to find .

.
 is set, according to some conditions:

 softmax entropy linout

Classification FALSE TRUE FALSE

Classification TRUE FALSE FALSE

Regression FALSE FALSE TRUE

We impose a quasi-Newton condition: has to satisfy the secant equation,

If we define and , the secant equation is .
Then, the approximation of the Hessian is updated by summing two matrices, and , of rank
one. As we want to maintain the positive definiteness of , we can choose

. If we impose the secant equation and choose , we can
obtain

Finally, substituting in the formula for , we can set it to be

Tricks of the trade: sensible choices when implementing and
training MLPs

First of all, let us present the R function nnet :

This function fits single-hidden-layer neural networks, using the following parameters:

x as the inputs
y as the targets
weights as an optional weights vector for the inputs, in case we want to give more
importance to some of them
size as the size of the hidden layer (i.e. the number of neurons)
Wts as an optional initialization for the network weights
mask is an optional bitmask to interpret which variables to take into account in the inputs
linout , entropy and softmax are three boolean parameters that can be set to true (only
one at once) to train the network for the following purposes:

skip lets us say if there are any connections from the input directly to the output layer
decay is a regularization parameter
The other parameters can be easily understood

The output layer of a feed-forward neural network is schematized like this:

nnet(x, y, weights, size, Wts, mask,

 linout = FALSE, entropy = FALSE, softmax = FALSE,

 censored = FALSE, skip = FALSE, rang = 0.7, decay = 0,

 maxit = 100, Hess = FALSE, trace = TRUE, MaxNWts = 1000,

 abstol = 1.0e-4, reltol = 1.0e-8, ...)

af://n1035

number of
neurons

activation
function

Classification
1 logistic

Classification
softmax

Regression identity

Given that is the th component of the function to learn.

On-line vs. Batch learning:

On-line training is much faster, but the notion of convergence is unexistent. Even though, it is
much faster than batch, particularly in large redundant datasets, and often results in better
solutions. It can also track changes in the data.

Batch training, on the other hand, is much better understood as the notion of convergence does
exist. It can be accelerated using second-order information, and it is not sensitive to the ordering
of the training examples, which on-line learning is.

As of today, we call mini-batches (different) subsets of training observations used in consecutive
epochs.

Activation function: It is known experimentally that an MLP trains much faster (as in, reaches an
optimum in less iterations) if the activation function is anti-symmetric, . This is the
case for the .

Target values: these should not be the asymptotic values of the activation function, but they
should leave a margin. For example, in a two class problem, it is better to encode class 0 as 0.05
and class 1 as 0.95 than to encode them as 0 and 1.

Input values: these should be preprocessed so that:

their mean value is zero and their standard deviation is 1 (standardized)
they are uncorrelated (perhaps using PCA)

Initial weights: these should be small and zero-centered, to avoid initially driving the neurons
into saturation.

Number of hidden neurons

While the number of inputs and outputs are dictated by the problem, the number of hidden
neurons is not directly related to the application domain. This largely remains an unsolved
problem.

A small number may not be sufficient and provoke underfitting of the model.
A large number may be too much and provoke overfitting of the model.

There exist many methods to set this number: constructive (for example, cascade correlation),
pruning or destructive (for example, optimal brain damage), golden searches, ...

But, arguably a good and recommendable method, as it is more principled and arguably faster, is
to use a large number (to overfit the model) and regularize the network. In nnet , we set the
decay parameter and we can then perform cross-validation on it. There's more on ANN
regularization and neuron dropout in the articles directory of this repository.

af://n1118

So, there are two simple and common ways to find the best single-hidden-layer network
architecture:

Explore different number of hidden units, without regularization.
Fix a large number of hidden units and explore different regularization values.

What should not be done is both at once. It is usually a waste of computing resources.

9. Artificial Neural Networks (II): RBF Networks

Introduction

RBFs have their roots at exact function interpolation in mathematics. Its formulation as a single-
hidden-layer neural network came later. In a RBF model, the output of a neuron is determined by
the distance between the input and the neuron's parameter vector, called its center or
prototype. This latter fact has two important consequences:

1. It allows to give a precise interpretation to the network output: it will be a linear
combination of similarities. This similarities will be calculated from the distances using the
activation function.

2. It allows to design training algorithms other than BPA, which will be de-coupled, meaning
there will be different ways for establishing the parameters of the hidden layer (non-linear
part) and the output layer (linear part).

But what is exact function interpolation? The setting is the following: we have a set of data
points who all live in , and a set of real numbers . Given this, we want a function

 such that

In our case, we will express as a combination of basis functions like the following:

Each data point acts as a prototype. This combination will be linear with respect to the basis
functions:

which we will force to be exact for all the data points: . The function is any norm
in , and most often an Euclidean norm (a norm heir of a scalar product). Because of the norm,
the are functions that exhibit radial contours of constant value centered at the data points

. In matrix notation,

Note that is a symmetric matrix, as . Assuming that this matrix is non-
singular, can be found as . This can be done, for example, using
decomposition. There exist some sufficient conditions on as to make sure that is invertible,
known as Micchelli's theorem. These sufficient conditions include:

 (Gaussian RBF)

If the interpolation problem has image in (i.e.,), the generalization is straightforward:

af://n1135
af://n1136

that we will force to be exact for all the data points: . This problem leads to

solved again by simple matrix inversion as .

Regularization

Very often, in Machine Learning, the exact function interpolation setting is not attractive at all:

High number of interpolation points means complex and unstable solutions.
The outputs depend stochastically on the inputs . So, if we have exact solutions, we
will be victims of overfitting.
The interpolation matrix can be singular or ill-conditioned.
The inversion of grows as . For symmetric positive definite matrices, Cholesky

decomposition takes some steps.

We are in need of a tighter control of complexity of our solution. Enter regularization.

From previous lectures we know that regularization penalizes the size of the weight matrix,

which results in ; the value of is proportional to the amount of noise
in the data. Another way of obtaining much simpler solutions is to use a subset of the data
points to center the basis functions; more generally, they can be centered at a very carefully
selected set of points in . With these two modifications (regularization and lowering the
number of centers), we can get into RBF networks.

RBF networks

The so-called RBf network is of the form:

which is a two-layer neural network:

The first (hidden) layer of neurons computes the basis functions centered at
the vectors .
A constant basis function compensates for the difference between the mean
values of the output and the targets.

A very popular choice for the is a simple Gaussian:

The new matrix is sometimes known as the design matrix; now the weight matrix is

af://n1166
af://n1181

If the original matrix was non-singular, then the matrix is also non-

singular (this is a very important result). Note that this solution is not regularized: if we do
regularize it, we get that

RBF network training is typically performed in a decoupled way:

1. The first stage finds using a clustering algorithm such as k-means.

2. The second stage finds by any of the usual (linear) methods:

Solution using the Moore-Penrose pseudo-inverse (via the SVD), for regression.
Solution using IRLS (logistic regression), for binary classification.

10. Ensemble methods: Random Forests

Ensemble methods are learning methods that learn by training a number of better-than-
chance individual learners and then combine their predictions. This methods have a number of
advantages:

They provide more accurate models by combining the output of multiple local "experts".
A complex problem can be decomposed into multiple sub-problems that are easier to
understand and solve (divide-and-conquer).
We often train many models and feel we can get more by combining a number of them. In
this way, computational efforts are not wasted.

We should use ensemble learning methods when we can design better-than-chance individual
learners that are independent from each other. How do we combine the multiple individual
outputs of each learner to get a unique answer?

For the classification task, we use plurality voting: the class that has the most votes is the
answer.
For the regression task, we average all the answers (usually with the arithmetic mean).

Regression: call the ensemble, the th individual learner, ; fix an input vector
and let , where is the function we want to learn:

1. The expected MSE for a randomly chosen individual learner is:

2. The expected MSE for the ensemble is:

Using Cauchy-Schwarz inequality, we can prove that

In particular, if the individual learners are independent, the reduction in expected error would be
. In practice this is not the case, because the individual learners are normally trained out of the

same data. Thus, they will tend to have correlated errors, and then the improvement will be
smaller.

Classification: to ease the problem, let us assume the following:

The number of classifiers is odd and we have class labels.
Each classifier gives the correct class with probability for any .
The classifier outputs are independent.

Then, the majority vote will give an accurate class label if at least classifiers give correct
answers. The majority () of votes is necessary and sufficient for a correct decision in the
case of , and is a sufficient condition (but not a necessary one) for . Thus, the real
accuracy of an ensemble using plurality when could be greater than the majority vote
accuracy.

Consider . The accuracy of the ensemble is:

af://n1208

The Condorcet Jury Theorem states that:

1. If , then is monotonically increasing and as .
2. If , then is monotonically decreasing and as .

3. If , then for any .

CART algorithm

The CART (Classification And Regression Tree) algorithm generates a classification tree using the
Gini score Gain: how often a randomly chosen example would be incorrectly labeled if it were
labeled according to the empirical probability distribution of the classes. Mathematically, the Gini
score is:

being the fraction of examples in labeled with class . Note that if a variable completely
characterizes the class (perfectly separates into the labeled classes), then

, which is a "pure" scenario. If the probability distribution is uniform, then
the Gini score achieves its maximum value, .

The Gini Gain of a discrete variable is an impurity-based criterion that measures the
divergence between probability distributions of the class labels. It is mathematically calculated as

assuming are the elements of with value . If is a continuous variable, we sort the data
rows and bin-split: we calculate the Gini score for the binary question "do the elements have a
value greater than ?", with , for . In this way,

we get a binary tree.

CART can also build regression trees, albeit it does not use the Gini score for that matter, but tries
to maximize the RSS gain (Residual Sum of Squares) at each step. In this sense, both
classification and regression trees built by CART follow a greedy algorithm.

Methods for constructing ensembles

We want to make the individual learners in the ensemble be the least correlated possible. There
have been a lot of ways proposed to do this, such as:

Subsampling the training examples
Manipulating the features
Manipulating the targets: for example, make each individual learner be an expert of
classificating observations in a particular class.
Changing the learning parameters
...

Or a combination of the above. We will delve into subsampling of the training examples. The
most common way to do this is by Bootstrap Resampling.

Bootstrap Resampling

af://n1262
af://n1276

Assuming we have a data set , we draw bootstrap resamples
 of size by sampling with replacement and then fit a model to each of the . A

statistic can be estimated in the usual ways. For example,

are the mean and variance of the bootstrap distribution of , and . An estimation
for the bias of is .

If we want to subsample the training set, we might use a method created by Leo Breiman
(1996) called Bagging (Bootstrap aggregating): this creates an ensemble by training individual
classifiers on bootstrap resamples of the training set. The procedure is the following:

1. Generate a bootstrap sample from a sample of size (independent draws with
replacement).

2. Train a predictor on every bootstrap resample .
3. Repeat the process until you have resamples and predictors.

What is the expected size of a bootstrap resample? Well, in a data set with examples, each has
a probability of not being chosen over all the choosings of

so the probability of being chosen at least once is

If ,

The perturbation in the training set due to bootstrap resampling causes different methods to be
built, particularly if the classifier is unstable. A modelling method is unstable if a small change in
the training data (e.g., order of presentation, addition or deletion of data) can lead to a radically
different model. This is typical of overfit models: they have a low bias and a high variance.
Examples of these include decision trees and neural networks. Using the bagging procedure,
we can dramatically reduce the variance of unstable methods of the same type, leading to
improved prediction capabilities, at the price of keeping or increasing the bias (although not
much).

Now, we can see that for bagging we do not need new data to estimate the prediction error of a
model. We can do so by calculating what's called the Out-of-bag error (OOB). To calculate this,
we use data that is not in the bootstrap resamples: define

 as the indicator function of boolean condition .
 as the set of indices of the resamples that do not contain observation ,

 as the model fitted to .

Then, the OOB error (validation error) is calculated using

Similarly, the resubstitution (aka training) error is estimated as:

where . The 0.632-bootstrap estimate is defined by:

Intuitively, this pulls the OOB bootstrap estimate down toward the training error, thereby
reducing its likely upward bias.

Random Forests

Random Forests (Breiman, 2001) are an ensemble method similar to bagging, where the
individual learners are decision trees, with additional randomization:

We first generate bootstrap resamples an build a tree for each one. But, the trees are built in
a more random fashion than normal decision trees:

Their diversity is increased (they are decorrelated) by the following procedure: every
time a split is considered in a tree (an internal node), a subset of predictors is
randomly chosen from the whole predictor pool. Then, the split is only allowed to use
one predictor of those (the best one in terms of Gini gain). The default values are

for classification and for regression; these are due to L. Breiman also. If we used
, we would be directly using bagging.

So, we have two basic hyperparameters: , the number of trees, and , the number of local
features chosen at each split of every tree; both can be optimized via the out-of-bag error.
Construction of the random forest is fast, since just a few features are explored per tree.

Random Forests usually outperform both the individual predictors and direct bagging. They can
be also used to estimate variable relevance:

For each tree, the OOB prediction error is computed.

Then again after permuting each predictor variable.

The difference between the two is averaged over all trees, and normalized by its standard
deviation:

.

If we have a probabilistic classifier, instead of bagging we could average the probabilities for each
class in an ensemble, and then assign the class with the highest probability.

af://n1312

	Machine Learning 1
	1. Introduction to Machine Learning
	Useful probability and statistics facts
	Inductive bias
	Formulation of ML
	Prediction vs. inference

	Common Tasks
	Setting up the tasks
	Optimization view
	Statistics view

	General form of a linear model

	On data pre-processing

	2. Linear Data Visualization
	Dimensionality reduction
	Principal Components Analysis
	Fisher's Discriminant Analysis
	Counterparts

	3. Theory for regression and linear models (I).
	The regression framework
	Bias-Variance analysis

	4. Regression theory and linear regression models (II)
	Quality of the fit
	Leaping forward: basis functions
	Singular Value Decomposition
	SVD for least squares

	Regularized least squares
	LASSO Regression
	Conclusions

	5. Classification theory and linear classification models (I). Bayesian decision theory.
	Introduction: Bayes' formula
	Decision rules
	The Bayes classifier
	The notion of risk
	0/1 losses
	Discriminant functions
	The Gaussian Distribution
	Properties

	6. Classification theory and linear classification models (II).
	Generative Bayesian classifiers
	Discriminant functions for the Gaussian density
	A numerical example
	Computations in practice
	Discussion
	Regularized Discriminant Analysis
	Pros & cons

	The Naive-Bayes classifier
	Extensions
	Null empirical probabilities

	The kNN classifier

	7. Classification theory and linear classification models (III).
	Discriminative classifiers
	Maximum Likelihood (ML) framework (I)
	Generalized Linear Methods
	Logistic regression
	Interpretation of the model
	Parameter obtaining
	Newton-Raphson
	Deviance and AIC
	Interpreting the coefficients

	Poisson Regression

	Maximum Likelihood framework (II)

	8. Artificial Neural Networks (I): The Multilayer Perceptron (MLP)
	How to train a single layer ANN: the Delta Rule
	Towards non-linear models
	Error functions for classification
	Training MLPs: An introduction to the backpropagation algorithm for regression
	Relation between backpropagation and order methods

	Tricks of the trade: sensible choices when implementing and training MLPs
	Number of hidden neurons

	9. Artificial Neural Networks (II): RBF Networks
	Introduction
	Regularization
	RBF networks

	10. Ensemble methods: Random Forests
	Methods for constructing ensembles
	Bootstrap Resampling

	Random Forests

