
3. Optimal and Adaptive Filtering  

3.1. Wiener-Hopf filter  

3.1.1. Introduction  

Several estimation problems can be modeled relying on a similar formulation:

Given a set of data from an observed noisy process  and a desired target process  that we 
want to estimate, produce an estimation  of the target process by linear time-invariant filtering (

) of the observed samples.

We assume known stationary signal and noise spectra (correlation), as well as additive 
noise. We will first assume Finite Impulse Response (FIR) filters, and afterwards we will delve into 
non-stationary scenarios.

Filter configuration  

This formulation can be applied to a large family of problems that are commonly sorted into four 
wide classes:

System identification  

We want to identify a given system, that can be real or some abstraction. We model this system 
as an LTI system plus an additive noise source .

Design and use: we excite the system with a known signal  and obtain the filter that models 
the system.

The application assumes a noisy reference and noise-free observations.

System inversion  

We want to estimate a system and apply its inverse to the signal. We model this system as an 
LTI system plus an additive noise source .
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Design: we excite the system with a known signal  and obtain the filter that models the 
system.
Use: the filter is concatenated to the system to recover the estimated signal.

The application assumes noisy observations and a noise-free reference.

Signal prediction  

We estimate the value of a random signal at a given time instance , based on other time 
instance values ( ).

Design: we compare the current signal value  with its estimation .
Use: The current signal value  may not be available and we produce an estimation. If  
is available, we produce the prediction error .

The application assumes that observations and reference belong to the same noisy process.

Signal cancellation  

We estimate the value of a primary signal which contains an interference. This interference has 
been isolated through other sensors in additional signals.

Design: we compare the primary signal  with the interference .
Use: we obtain the clean signal as the estimation error .

The application assumes that the noisy interferences are the observations, while the noisy signal 
together with the interferences are the reference.

3.1.2. Minimum Mean Square Error (MMSE) prediction  

Given the generic formulation, we restrict the analysis to the FIR filter case. It is the optimal 
solution if  and  are Gaussian jointly distributed processes. Then, the filter is assumed to 
have a finite number of coefficients . We use the MSE as an optimization criterion because it is 
mathematically treatable, leads to useful solutions and can be used as a benchmark for other 
solutions.
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We will use the following notation:

So, say we have this generic signal case:

Then, the error is

and we want to minimize it:

In order to do this, we will first prove what is called the principle of orthogonality: if the MSE is 
minimum, then it holds that

If the MSE is minimum with respect to the filter, we know that the gradient is . Then, if we 
develop this mathematically,

So, we know that the error is orthogonal to the observations.

Now we want to develop some useful results of the MMSE prediction in a specific signal scenario:

The observation process  can be split into two parts, .
The reference process  can be split into two parts, .

These parts of each process have the following correlation properties:

When using the filter that minimizes the MSE, , the following properties hold:

1. At any point in time, the signal estimation and the error signal are not correlated:

2. The variance of the reference signal is greater or equal than the variance of the error signal:



3. If the observation and the reference signals are not correlated, the variance of the 
estimation is zero:

4. The minimum variance of the error signal is :

We will analyze the previous properties for the signal setting we stated before:

(sic.)

3.1.3. The Wiener-Hopf filter  

The Wiener-Hopf solution  

So far, we have analyzed some properties of the optimal filter, but we are yet to obtain it:

So, this is the optimal filter in the sense of MSE minimization, with the matrix and the vector 
involved being

The optimal filter, hence, depends on the second order statistics of the processes. We will 
analyze the properties of this correlation matrix, and also we will study what to do when such 
statistics are not available.

The error performance surface  
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The Wiener-Hopf filter is optimal at minimizing the MSE of the prediction; that is, the variance 
(power) of the error signal  (assuming it is zero-mean). We now want to study how does the 
MSE behave for an arbitrary filter. In order to do this, let us first develop a useful result: for any 
filter, the MSE can be expressed as

So, let's see this result:

So, as we can see, the MSE of any filter is a quadratic function of the filter coefficients and 
always lies in an dimensional surface. As  is positive definite, the quadratic function is 

convex and hence it has a unique extreme that is a minimum, which is exactly what we wanted. 
The reference signal  only impacts on the position and value of the optimal solution, and not 
on the shape of the surface. We can also note that, as  is positive definite, any deviation from 
the optimum filter increases the MSE. This increase depends only on , and so, only on . 

This fact will be very useful in the design of adaptive filters.

Example: Imagine we have the following signal cancellation scenario. We estimate the value of a 
primary voice signal which contains an interference (voice+noise) in a helicopter, taken with a 
microphone. This interference has been isolated through other sensors in additional signals.

So, first of all we set our scenario:

The microphone signal receives voice, engine sound and sensor noise.
The reference sensor (noise isolation) receives engine sound and noise, but its engine 
sound is different than the one received through the microphone.

Our signals are:

Voice: uncorrelated with the other signals.
Engine  (sensor) / Engine  (microphone): correlated signals with a helicopter-cabin effect.
Noise : everything in the reference sensor that does not appear in the microphone. 
Uncorrelated.
Noise : intrinsic system noise, low power, uncorrelated.

Then, mathematically we can represent all of this by

Which filter configuration do we need? A cancellation scenario like the following:



We want to obtain  as the clean voice signal. So,  and  will do the 
trick, as our filter will transform  into a signal with an approximate 
value for the engine noise received in the microphone.

So, how do we solve the problem? It is already solved! We have three ways of solving it:

1. Initial solution: we depart from the fact that we want to minimize the MSE, so 
, and we solve the problem via the following equation:

2. Partial solution: we depart from the principle of error-observation orthogonality, 
, and we solve the problem via:

3. Final result: we directly use the (already proven) fact that the optimal filter is

For simplicity purposes, we will use the third option. Then,

For , we do the same:

The final solution is, then,

The double function of the filter is evident in this solution: it adapts the correlated part of  
(with ) while cancelling the uncorrelated one.

Wiener-Hopf filter using a finite number of samples  
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As we already know, the optimal filter depends on the second ordre statistics of the signals. 
However, in a typical case we only have a (small) finite number of available samples from both 
the observable and reference signals. In that case, we can minimize an estimation of the mean 
square error over the available set of samples.

Let us assume that we have  samples of the reference signal and, given that the filter has  
coefficients,  samples of the observation signal. We can define:

Let us write this expression as a combination of vectors. If we arrange the  sample equations

in a vector, we can express the error as

given that

The optimal filter should minimize the MSE:

By comparison with the optimal expression having infinite samples, we can see that we are 
implicitly estimating the cross-correlation vector and the correlation matrix, based on 
available samples:

The estimations would be

We can interpret the optimal filter (MMSE) using a finite number of samples as an estimate of the 
Wineer-Hopf filter using exact second-order statistics:



In order to assess this estimator, let us fix a (simple) system identification scenario:

The application assumse noise-free observations (the known signal ) and noisy reference 
. The additive noise is modeled as white and Gaussian. Then, as we did in the 

previous chapter of the course,

Hence the efficient estimator is (left) and the Fisher information matrix is (right):

As we can see, the estimator that we have developed for the Wiener-Hopf filter is a MVUE 
estimator (it's efficient).

3.2. Linear Prediction  

Introduction  

In signal prediction, we estimate the value of a random signal at a given time instance ( ), 
based on other time instance values ( ).

Design: we compare the current signal value  with its estimation .
Use: the current signal value  may not be available and we produce an estimation. If  is 
available, we produce the estimation error .

The application assumes that observations and reference belong to the same noisy process. In 
the context of linear prediction, we can define three possible scenarios:

Forward prediction: the current sample is estimated using only previous samples. For 
example, to forecast a given parameter value.
Backward prediction: the current sample is estimated using only future samples. For 
example, for "remembering" a given value. Implies some delay.
Linear smoothing (or interpolation): the current sample is estimated combining past and 
future samples. For example, to recover a damaged signal.

Note: commonly in signal processing applications, what is important is the ability to obtain a 
good estimation of a sample, pretending that it is known, rather than forecasting it.
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The Wiener-Hopf filter as a predictor  

Let us analyze the FIR Wiener-Hopf filter in the context of forward prediction. Let us assume 
that we want to predict a given stationary process . In that case,  and 

. With this scenario, the Wiener-Hopf solution implies:

So we have the following relations between the two schemes:

When the optimal filter is used:

Error is orthogonal to data:

The power of the error is lower than the power of the reference signal:

The minimum error power is:

The expression for the optimal filter is

and the power of the error for any filter  is
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Linear prediction for signal coding (LPC)  

Assuming stationarity, the Wiener-Hopf filter minimizes the MSE between the process and its 
estimation (MMSE: minimum error power): signals are usually processed by (close to) stationary 
segments called frames. In speech coding, this is typically 20ms.

As the power of the error is lower than the power of the reference signal. That allows defining a 
coding gain :

Given a filter different from the optimal one (for example, the quantized filter ), the obtained 
error power and actual coding gain can be computed:

Coder/Decoder structure  

For each frame (assumed to be a stationary signal), the decoder receives the filter that has been 
used for predicting the signal and the prediction error. Assuming amplitude-discrete signals 

, the receiver can reconstruct the original signal  without loss.

Internal variables are kept when starting to process a new frame. We can see on the left the 
coder system, and on the right the decoder system. Let's see how the first few iterations of the 
codec structure work:

If , the first coding step starts by observing that , so 
. Then, , so the coder transmits the 

filter and this predicted value. Then, the decoder kicks in. The first decoding step starts by 
setting  and , so then  and 
then, it can reconstruct the th sample as .

If , . Then, the prediction for  is 
. The prediction error is . The decoder 

receives this error and the filter, and it can easiliy reconstruct the signal, as 
 and it uses . Then, its prediction is exactly the same 

for the lower part of the filter,  and so, it recovers the value of the 
signal as .

Quantization of the prediction error  

So far, when we talked about quantization we have concentrated on the quantization of values 
that come directly from a signal (voice, audio, image) or are model coefficients (filter 
coefficients). As we are interested in transmitting the prediction error, the following question is 
quite relevant: should the same strategy apply in the case of quantizing prediction error 
samples? The coding scheme, in that case, can be the following one:
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In this kind of situation, how does the decoder work? Well, it tries to recover a (quantized) version 
of the input signal following the next scheme:

The decoder uses  as the quantization error and  as the quantized error, so 
. For simplicity, let us assume that the exact values of the  coefficients of  

are available at the receiver side and so are the first  samples of the signal . Then, the 
scheme evolves like this: at the -th step,

The coder sets  to be . Then, its prediction is 
. Then, the prediction error is , which 

is exactly . This prediction error is quantized and hence, 
.

The decoder predicts . But, as we have already said, the first  samples 
of the signal are available to the decoder. So, . Then, its 
reconstruction of the input signal is . By 
definition, , and so, 

 which is a kind of quantized 

version of the input signal.

At the th step,

The coder sends .
The decoder predicts , which 
after the filtering is equal to . So, its 
reconstruction of the input signal is 

. If we 
further develop this, we get that 

, and so  
cancels out and we get .

Linear prediction coding of speech signals  

in speech signals high temporal correlation between close samples (can be appreciated in 
autocorrelation or spectral density)

linear prediction -> higher prediction gains in voiced signals

large increase in the performance comes from the fact of including nearby samples in the 
predictor (N=8-10) as well as samples that are near to one pitch period T apart. samples in 
the middle of this range do not improve the prediction gain

short term & long term prediction

short term: information about the periodicity of the signal is not explained
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to achieve better results usually a long term predictor is concatenated to the short 
term one

short&long term predictor: intermediate samples not used
long term: usually around 1-3 coefficients. can be used for pitch estimation (more on the 
slides 28-31 of the 3.2 section)

3.3. Adaptive Filtering  

Introduction  

Need for adaptive filtering  

In the four scenarios that were presented as examples of the Wiener-Hopf filter, we can 
distinguish two different classes:

System identification and inversion: if the system (or the system model) that is to be 
processed varies in time, the W-H solution has to adapt to these variations.
System prediction and cancellation: if the processes that are analyzed are non-stationary, 
the W-H solution has to track and adapt to their statistical variations.

Assessment of adaptive filtering  

The goal of an adaptive filter is to first find and then track the optimum filter as quick and 
accurately as possible. There are different algorithms for implementing the filter adaptation. 
Therefore, we need criteria for assessing the quality of these algorithms:

Speed of convergence: (or speed of adaptation) it measures the ability of the algorithm to 
bring the adaptive solution to the omptimal one, independently of the initial conditions. It is 
a transient-phase property.+
Misadjustment: (or quality of adaptation) it measures the stability of the reached solution, 
once convergence is achieved. It is due to the randomness of the input data. It is a steady-
phase property.
Tracking: if the processes that are analyzed are non-stationary, the W-H solution has to 
track and adapt to their statistical variations. It is a steady-state property.
Complexity: commonly, it is measured in terms of the number of operations that the 
algorithm requires to process a new sample, or time update. Additional concepts such as 
memory usage and parallelization properties can be analyzed.

Steepest descent  
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Most adaptive filtering algorithms are obtained by simple modifications or iterative methods 
for solving deterministic optimization problems. In the sequel, we are going to study several 
aspects of gradient-based optimization techniques, from the theoretical point of view and still 
in a stationary scenario, as bases for the creation and understanding of adaptive methods.

Study of the error performance surface  

The Wiener-hopf solution filter is optimal in the sense that it minimizes the MSE of the 
prediction; that is, the variance (power) of the error . Recall that, for any filter , the MSE can 
be expressed as:

This expression represents an hyper-surface in  with a minimum at .

Example: Let us analyze the case for ; that is, .

Then, the MSE is a quadratic function that looks like this:

This defines a paraboloid in 3-dimensional space. The level curves of this paraboloid are ellipses 
in the plane:

What is the optimum filter if:

We have an observed signal  with low correlation between consecutive samples:

Given this data we can compute:

We have an observed signal  with high correlation between consecutive samples:
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Given this data we can compute:

The minimization algorithm  

An iterative algorithm that obtains the minimum of the error performance surface should fulfill 
the following criteria: (  is the iteration)

The proposed recursion uses the information in the gradient of the function to be minimized:

This is the steepest descent algorithm; it is based on the Taylor expansion around . The 
positive parameter  is known as the step size, and it determines the speed of convergence 
towards the optimum. The gradient  of the MSE is used at each iteration, evaluated at each . 
At every point, it is perpendicular to the level curves, so it does not always aim at the 
minimum. Let's calculate this gradient in our setting, using :

If we restrict this expression to  and substitute the result into the recursion, we get:

Convergence analysis  

Let us start analyzing the one-dimension case, :

If we now subtract  from both sides, we get

This expression allows for a change of variable that simplifies the analysis of convergence: if we 
call  to the difference in both sides of the equation, we have

And, as the  converge to , the  converge to 0. The convergence range is:
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The extreme cases' behaviour is pretty obvious: if , then the  don't move at all; if , 

then the  change signs at each iteration because of the . In the intermediate cases, the 
following happens:

: the  tend towards 0 slowly, as  is between 0 and 1.

: , as .

: the  hop from one side to the other of 0, while approaching it.

To extend the previous analysis to the dimensional case, we need to establish some 
properties of the correlation matrix:

It is semipositive definite: for any vector ,

Because of the previous point, its eigenvalues are non-negative:

Via the spectral theorem, we know that it can be decomposed into , where  

is a diagonal matrix and  is an orthogonal or unitary matrix.

We are going to perform a change of variable analogous to that in the 1-D case. Nevertheless, 
since we are in an dimensional problem, we have to account for a displacement and a 
rotation:

Now, we can compensate for the displacement. In order to obtain the rotation, we decompose 
 into its spectral decomposition, , and



With this result, the different dimensions of the optimization problem have been decoupled, so 
every component can be analyzed separately:

We have already solved the 1-D problem, so we know that for each dimension we have 
. Since we want to use the same  for all dimensions, the (theoretical) bounds for  

are

In a practical environment we usually do not compute the eigenvalues of , and instead use 
simpler and more conservative policies. For example, as we know that the trace operator is 

invariant through base changes, and ,

The speed of convergence can be quantized as the number of iterations ( ) that are 
necessary to reduce the distance between the achieved solution and the optimum to a given 
value . In a given dimension, we can write:

When generalized to the  dimensions, it can be shown that for small values of ,

so, the speed of convergence is proportional to the dispersion of the eigenvalues. (examples 
of this in slides 26-31 of section 3.3).

Least Mean Square (LMS) approach  

Stochastic approximation of the gradient  

The steepest descent recursion for the Wiener-Hopf filter uses the correlation matrix and the 
cross-correlation vector, but in a real setting, neither of those are known and both have to be 
estimated via their instantaneous approximations. In this application, as signals are assumed 
to be non-stationary, we cannot use an estimator with a large memory (no accumulation of 
previous data). With these instantaneous estimations, we produce the stochastic 
approximation of the gradient:
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Note that now  is estimated at each new sample and the iterations and the samples are not 
different indexes anymore. Using this stochastic approximation, the recursion for the algorithm 
is:

Using the definition of the error, , and manipulating a bit the previous 
expression, we get

and, as , this is the same as

This is called the Least Mean Squares (LMS) approach. The LMS algorithm is, therefore,

1. Filter the received signal: 
2. Compute the error: 
3. Update the coefficients: 
4. Return to 1 (if any more observations are received).

Convergence analysis of the LMS algorithm  

We study the convergence of the LMS algorithm in a stationary scenario. As the gradient is 
estimated, the resulting value is random. Therefore, we need to study the algorithm 
convergence in statistical terms, in an expected value sense:

If we assume that the observations and the filter coefficients are approximately independent, we 
obtain the following equation:

In the expected value sense, we have obtained the same iteration equation as with the 
steepest descent method. The step size  has to fulfill the same restrictions as in the Steepest 
Descent (SD) algorithm to achieve convergence:

The speed of convergence is the same in both cases (LMS, in the expected value sense, and SD):

And, as in the SD algorithm, a more conservative policy is adopted for the step size:

In some cases, the dynamics of the input signal (that is, ) are not constant due to non-
stationarity. In such a case, the step size should be updated to guarantee convergence. So, the 
normalized LMS approach is:
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Use a conservative value for the step size: , with .

Dynamically estimate the input power:

With an instantaneous estimation: .
With a time-averaged estimation: .

Misadjustment of the LMS algorithm  

Although the LMS algorithm converges in the expected value sense, the fact of estimating the 
gradient produces an increase in variance of the minimum error achieved. This is known as the 
LMS steady-state excess MSE (in absolute value, first) or as the LMS misadjustment (in relative 
terms, second):

The  parameter in the LMS algorithm:

Is bounded to ensure convergence.
The speed of convergence increases with .
The misadjustment is proportional to .

Moreover, eigenvalue dispersion affects the speed of convergence, but not the misadjustment. 
The latter is mainly affected by increases in the power of the signal. (examples of this in slides 39-
48 of section 3.3).

3.4. Applications of Optimal Filtering  

This applications and how to solve them are all in the course slides of section 3.4. There, we solve 
the following problems:

Affine predictor: Comparison between linear and affine prediction for non-zero mean 
signals.
Wiener-Hopf solution for highly correlated data: Avoiding the use of close to singular 
correlation matrices.
Short term / Long term correlation: Embedding a signal into noise. We separate a 
broadband noise signal from a narrowband signal that we want.
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