
2. Estimation Theory  

2.1. Introduction to Estimation Theory  

1. Introduction to Estimation Theory  

Given an point data set  which depends on an unknown parameter  
(or set of parameters ), we wish to determine  based on the data, through the definition of an 
estimator:

where  is some function.

The dependence of the available data  with respect to the parameters  is captured by the 
model that is proposed. As data is random in nature, we represent it by its probability density 
function (pdf):

The pdf is parametrized by the unknown vector of parameters .

Case 1: We are given a pdf. For instance,  ( ) and  is the mean, the pdf could 
be

Case 2: Usually, we are given data and we have to choose a model:

1. Models should be consistent with the problem and previous knowledge.
2. Models should be mathematically tractable.

Case 3: Bayesian approach. We can assume that the parameters to be estimated are random 
variables (instead of deterministic but unknown). The knowledge about its pdf can be 
included.

In several situations, we want to estimate the mean value of a random process that can be 
modeled as a constant value  embedded in stationary white noise :

 White noise: each sample has a probability distribution with zero mean and finite variance, 
and samples are statistically independent and .

 Stationary white noise: all variance samples have the same value and the autocorrelation 
function is .
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How can we estimate the mean value of a random process given a set of observations ( ) of a 
single realization? We can propose different estimators:

We need to assess the performance of the estimators to decide which one should be used.

1. Assessing Estimator Performance  

How can we estimate the mean value of a random process given a set of samples ( ) of a simple 
realization?

Let us assume that we select the average of the available samples (sample mean) as estimate of 
the mean value of the process. For this selection to be correct, we have to assume:

Stationarity: the parameter to be estimated does not change through time.
Ergodicity: any realization of the process ( ) assumes the statistical properties of the 
whole process,

Estimators operate on the samples of a given realization. The estimated value depends on:

The available realization .
The selected window .

Thus, any estimator is a random variable.

Features of an estimator  

The bias of an estimator is the difference between the expected value of the estimator and the 
true value of the parameter being estimated:

Estimations delivered by a biased estimator are consistently different from the parameter 
to be estimated.
An estimator without bias is called unbiased.

Exercise: Given the signal model , where  is a stationary white noise, 
calculate the bias of the estimator:

Solution:

So, this estimator is unbiased.
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The unbiased constrain is desirable and, among all unbiased estimators, that of minimum 
variance is preferred; it is called the Minimum Variance Unbiased (MVU) estimator. The 
variance of the estimator is calculated as

An estimator is consistent if, as the number of samples ( ) increases, the resulting sequence of 
estimates converges to , and the variance of the estimates converges to zero:

Exercise: Given the signal model , where  is a stationary white noise, 
calculate the variance of the estimator:

Solution:

This last equality implies that the estimator is consistent.

If the estimator is biased, the dispersion of the estimations with respect to the actual value to be 
estimated ( ) is not the variance but the Mean Square Error of the estimator ( ). The MSE 
can be a measure of assessment for a given estimator, but to define an estimator optimizing the 
MSE usually leads to unrealizable estimators.

Exercise: Prove that, for a given estimator ,

Solution:



Vector notation  

The previous sample mean estimator can be interpreted as a filter and, this way, we can 
generalize the study of its properties:

This estimator is linear in the ( ) data.

Exercise: Given the signal model , analyze the bias of the estimator .

Solution:

For instance, .

Exercise: Given the signal model , analyze the variance of the estimator .

Solution:

2. Minimum Variance Unbiased Estimator  

After generalizing the sample mean as a filter, we have obtained a family of unbiased linear 
estimators of the mean of a random process, for which we have the expression of their 
variance:

Note: we imposed zero-mean noise and the use of the unbiased estimator.

To obtain the Minimum Variance Unbiased (MVU) estimator, we should solve the following 
problem of optimization with constraints:

af://n84
af://n97


This optimization problem is formulated through Lagrange multipliers. This method allows an 
optimization problem with constraints to be solved without explicit parametrization in terms 
of the constraints.

Given a function  that we want to optimize subject to a constraint (described by another 
function) , we can define a Lagrange function (or Lagrangian)  whose first 
derivatives are zero at the solutions of the original constrained problem.

Note: the theory of Lagrange multipliers will be studied in the Mathematical Optimization course.

It is necessary to derivate a scalar function with respect to a vector.

Rules to derivate a scalar with respect to a vector.

Definition. Gradient. Given a scalar function , with , we define its gradient with 
respect to  as

Given this definition, the most common cases that we will work with are:

In the same way, we can obtain .

In the same way, . If we have a symmetric matrix, such as a correlation matrix, 

it can be shown that .

Obtaining MVU through Lagrange optimization  

To obtain the MVU estimator, we should solve the following problem of optimization with 
constraints:

Note: only unbiased estimator and zero-mean noise were imposed to obtain these results.

Exercise: Given the signal model , find the MVU estimator for the parameter .

Solution:
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In the case of stationary white noise, the correlation matrix is the identity and, as such, the filter 
 is . In either case, the parameter  is . We can see that it is unbiased, as

3. Function Estimation  

In some cases, we want to estimate a function rather than a single parameter. Common cases 
are:

The self-correlation function of a process.
The spectral density function of a process.

When estimating a parameter, the used estimator becomes a random variable. Therefore, 
when estimating a function (an ordered set of parameters) the estimator becomes a random 
process too (an ordered set of random variables).

Given  samples  of a realization of an ergodic process , we want to 
estimate the self-correlation of that process; let us analyze how to estimate each lag  of the self-
correlation function . We will first assess the following estimator :

As the correlation function is symmetric ( ) the second expression (for negative lags) 
is not computed. The  estimator is unbiased, and, terefore, . However, 
the value of  is not known. It has only been approximated for specific cases of random 
processes.

Let's see that the estimator is unbiased: we will only check for positive lags, as we know the 
function is symmetric.

af://n127


Therefore,  and the estimator is unbiased.

❖ The value of its variance has only been rpoven for the Gaussian case and , and it's 
equal to

However unknown their value, it is known that the  estimator behaves commonly for all 
probability distributions:

Its variance increases with the absolute value of the lag .
The estimator is consistent, meaning that .

How to improve the variance behavior?

To remove the dependency of  from the variance, a new estimator for the self-correlation is 
proposed:

Both estimators are clearly related: . We will now see that the new estimator is 

biased, and that it reduces the variance and the MSE.

As the two estimators are linearly related, we can see that the expected value of  is

The new variance is independent of , has decreased, and it still makes the estimator be 
consistent:

It can be shown that the MSE has decreased, .

The available  samples can be modeled as having a whole realization of the process that has 
been windowed. A (consistent) square window upon the data samples  produces a 
triangular window  upon the mean of the correlation samples: .

2.2. Cramer-Rao bound and Efficient Estimator  

In the previous unit we have been able to find the MVU estimator for the estimation of the mean 
value of a signal  that can be modeled as a constant value embedded in zero-mean noise, 

. To obtain the estimator, we have used the method of Lagrange multipliers to minimize 
a given criterion subject to an unbiased constraint.

However, if a MVU estimator exists, there is no method that ensures that we are able to find it. 
Nevertheless, the Cramer-Rao Lower Bound (CRLB or CRB):

Determines the minimum possible variance for any unbiased estimator. This bound, then, 
provides a benchmark for assessing any estimator performance.
Provides, in some cases, the expression for the MVU estimator.
Can be used to estimate the (non-linear) function of a parameter.
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Definition. Efficient estimator. We say that an estimator is efficient if it attains the CRLB.

Cramer-Rao bound for parameters  

There exists a lower bound for the variance of the whole set of unbiased estimators of a 
parameter . the bound is related to the probability density function of the data: when the pdf 
is viewed as a function of the unknown parameters (with  fixed), it is known as the likelihood 
function:

Then, while we won't prove it in this course, we state the Cramer-Rao Lower Bound:

Proposition. Cramer-Rao Lower Bound. The variance of any unbiased estimator  must satisfy

and equality holds when, for some function of the parameter ,

Let us analyze the case of the likelihood function  of a set of  Gaussian, independent 
samples:

each sample has a likelihood function  associated to it, and the joint likelihood function 
 provides information about the possible estimator. Looking for a maximum (we will see 

this later) in the joint likelihood function will provide a Maximum Likelihood Estimator for the 
parameter.

The more informative the set of samples , the sharper the likelihood function : a 
measure of sharpness is the curvature.

Definition. Curvature. The curvature of a likelihood function  is

af://n176


The larger the curvature, the smaller the Cramer-Rao bound on the variance. We can easily see 
this as the Cramer-Rao bound is nothing more than

The curvature depends on both the number of samples  and the likelihood function .

The optimal (efficient) estimator can be obtained through the condition of minimum variance: 
that is, imposing that

we can see that the optimal estimator  is

For the estimator to be efficient, the dependence on  should cancel out. We can see that the 
achieved minimum variance is given by

because if we calculate the curvature,

The denominator in the CRLB is referred to as the Fisher Information :

Exercise: Given  samples of a process that can be modeled as , compute an 
efficient estimator of its mean .

Note:  is a Gaussian stationary white noise.

Solution:

Exercise: Given  samples of a process that can be modeled as , compute an 
efficient estimator of its mean .

Note:  is a Gaussian colored white noise.

Solution:

Cramer-Rao bound for parameter vectors  

The extension to the case of a vector parameter  is as follows: the pdf is
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and the lower bound for estimator variance is the following:

Proposition. Cramer-Rao Lower Bound for vector parameters. The variance of any unbiased 
estimator  must satisfy

where  is the  Fisher Information Matrix,

Equality for the variance bound holds whenever the gradient of  with respect to  satisfies the 
following:

Exercise: Given  samples of a process that can be modeled as , compute an 
efficient estimator of its mean  and variance .

Note:  is a Gaussian stationary white noise.

Solution:

2.3. Maximum Likelihood & Maximum a Posteriori Estimator  

The CRLB states that there exists a lower bound for the variance of the whole set of unbiased 
estimators of a parameter . It proposes a mechanism that, in some cases, allows obtaining this 
estimator; this particular estimator that attains the variance bound is termed efficient. 
Nevertheless, there is no feasible estimator that satisfies the Cramer-Rao Lower Bound.

Maximum Likelihood Estimator  

Let us define the ML estimator:

Definition. Maximum Likelihood Estimator. The maximum likelihood estimator for a parameter  
is

Properties. The ML estimator has the following properties:

It is asymptotically unbiased (and in most cases, unbiased).
It is asymptotically efficient: when  increases, its variance attains the Cramer-Rao 
bound.
It is closely related to efficiency. In fact, whenever there exists an efficient estimator for a 
parameter, it is the ML estimator.
It follows a Gaussian distribution for large , characterized by its mean and variance.
Invariance through maps: the ML estimator of a function of a parameter, , can be 
obtained as .

Let's see why the efficient estimator is exactly the ML estimator: if there exists such an estimator, 
the following factorization
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has been possible. As  is a monotonically increasing function, the positions of the extrema do 
not change. Mathematically speaking,

Thus, if there is an efficient estimator, the Cramer-Rao and the Maximum Likelihood estimators 
are the same, as

Exercise: Given  samples of a process that can be modeled as , compute the ML 
estimator of its mean  and variance .

Note:  is a Gaussian stationary white noise.

Solution:

Exercise: Given  samples of a process that can be modeled as , compute the ML 
estimator of its mean .

Note:  is a Gaussian stationary colored noise.

Solution:

Exercise: Given  independent samples of a Laplacian process , we want to obtain 
the ML estimator of their mean  and diversity .

Note:  is a Laplacian stationary white noise. The parameter vector is .

Solution:

Exercise: We have 2 measures of a magnitude , with different errors. The errors are 
Gaussian, zero-mean, with variance  and independent. Compute the ML estimator of the 
magnitude to be measured.

Solution:

Maximum a Posteriori Estimator  

A Bayesian estimator models the parameter we are attempting to estimate as a realization of 
a random variable, instead of as a constant unknown value. With this approach, we can include 
the prior pdf of the parameter , which summarizes our a priori knowledge about the 
parameter.

Note: conceptually,  is a family of pdf's and  is a conditional pdf.

It is called the Maximum a Posteriori (MAP) estimator, since it can be formulated as:
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MAP and ML estimators: The conditional probability function  will be sharper around , 
as the number of samples  increases. In this case, if the information provided by  is 
correct, both estimators tend to be the same.

MAP with different priors: if we do not have any prior information about the parameter to be 
estimated, its pdf  is a constant and any possible value has the same likelihood. Then, the 
MAP estimator becomes the ML estimator.

Exercise: Given  samples of a process that can be modeled as , compute the MAP 
estimator of its mean , knowing that it is a random variable with distribution .

Note:  is a Gaussian stationary colored noise.

Solution:
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