
1. Statistical Signal Modelling  

1.1. Introduction to IPA and random variables  

1.2. Modelling of memoryless sources/processes  

1.2.a. Sample-wise operators  

1. Introduction  

Stochastic Processes  

When we have a set of signals that can be analyzed as being the result of the same given 
experiment, we model these signals as a stochastic process to jointly study them.

Memoryless Processes  

The analysis of a stochastic process relies on the statistic of the samples and on the 
dependencies among samples. Memoryless processes assume that every sample of the 
process is independent of its neighbor samples.

Any processing of memoryless processes only takes into account the sample values (sample-
wise operators), but not their index (time instant or position) of their neighbor samples' values. 
This are non-linear operations, defined by a mapping function, they process in the same way all 
samples with the same value and are commonly used for perceptual purposes.

Image model  

Sample-wise operators are largely used in image processing; in the pixel-based image model, 
for example, the image is understood as a collection of independent pixels. Operations also only 
take into account the pixel values, manipulating equally every pixel with the same value. Pixel-
based image operators are defined as following:

In a generic way, without taking into account the specificity of the images. These are called 
range transform operators.
In a specific way, adapting the operator to the image pixels' statistics. These are called 
histogram-based operators.

Memoryless operators  

These operators are very fast since they only require accessing at the pixel value of the pixel 
being processed. They are memoryless since they don't require storing any neighbor pixel 
values.

Other image models require analyzing a neighborhood of the pixel being processed: space-
frequency data, geometrical data, region-based models... We will analyze the two main types of 
memoryless operators introduced before.

2. Generic operators  

Range Transform Operators  
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We define a transformation  on the range of values of the input image ( ) onto the range of 
values of the output image ( ).

Gray level mapping  

Different segments of the input gray-level range are expanded or compressed depending on the 
transform features. The segments of  where the magnitude of the derivative of  is greater 
than 1 are expanded, and the segments where it's smaller than 1 are compressed.

Contrast mapping  

It expands (stretches) a range of the input image, mapping it into the whole output image range. 
A set of values of  are mapped into a single value of , a process called clipping.

Typically, clipping happens between the ends of the  range and the ends of the  range, 
mapping the minimum onto the minimum and the maximum onto the maximum. As a 
consequence of clipping, contrast mapping is a non-reversible transform (it's not injective).

Negative mapping  

It inverts the range of values of the input image creating a negative version of it. This does not 
change the contrast of the image. The difference between two pixels remains the same, and the 
magnitude of the derivative of  is always 1.
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Binarization mapping  

It binarizes the image by clipping all values below a threshold to 0 and all values above to 1. This 
is also commonly known as thresholding, and is non-reversible because of clipping.

Log transformation  

It is mainly used to compress the dynamic range of the image.

Power-law  
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Also known as gamma correction, this was originally developed for correcting Cathode Ray Tubes 
(CRT) distortion. It's useful to implement the Stevens power law for brightness perception.

Pseudo color  

The input range is mapped onto a higher dimensional space; for example, a 3D space 
representing a color space, where a color ( ) is assigned to every grey level value ( ). The 
transform can be represented by means of a Look-Up Table (LUT) that puts in correspondence 
the input and output values.

It's commonly used for visualization purposes in arts and biomedical applications. In satellite 
imagery, for example, spectral indexes are combinations between bands to obtain a parameter of 
interest.

Implementation  

Let us assume we want to implement . A possible approach is to compute 
the transform sample by sample:

But the resulting image has only 256 possible different values. So, we improve the 
implementation using dynamic programming:

This replaces runtime computation with simple array indexing operations.

3. Histogram-based operators  

Histogram definition  

// Transform the image

for (int i = 0; i < M; ++i) {

    for (int j = 0; j < N; ++j) y[i][j] = log(x[i][j] + 1);

}

// Build the LUT

for (int k = 0; k < Max_Val; ++k) LUT[k] = log(k + 1);

// Transform the image using the LUT

for (int i = 0; i < M; ++i) {

    for (int j = 0; j < N; ++j) y[i][j] = LUT(x[i][j]);

}
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The histogram  of a grey-level image with range  is a discrete map that stores 
for each possible pixel value ( ) the number of ocurrences of that value in the image ( ); that 
is, the number of pixels in the image with a given grey-level value. The histogram information is 
related to the probability of occurrence of a given value in the image. The normalized 
histogram  is an estimation of the probabilty density function (pdf) of a random variable 
associated to the grey-level values of the image pixels:

Histogram computation  

Examples  

Color image histogram  

The histogram of a color image can be defined in several ways:

1. A separate histogram for each component

This does not represent the joint probability of the three color components.
2. A 3D histogram (joint histogram)

This counts the occurrences of every possible colour .
A matrix of  elements is created, typically .

3. A luminance 1D histogram and a joint 2D chrominance histogram

Histogram equalization  

Continuous case  

Histogram equalization implements a pixel-based transform aiming at producing a flat 
histogram output image. It increases the global contrast and it depends on the input image's 
histogram. In this case, we can use the following change of variable result:

If  is a continuous variable and  is a strictly monotonous map with inverse map 
, then the pdf of  is given by:

// Compute the histogram of an image

const IMG_MAX_VAL;

vector<int> h(IMG_MAX_VAL, 0);

for (auto u: img) {

    for (auto v: u) ++h[v];

}
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From continuous to discrete case  

A mapping using the curve of the accumulated probability of  produces an output image with a 
uniform pdf (equalized in the  interval).

The continuous case mapping has to be adapted to the discrete case:

Constraint: elements having originally the same value (being in the same bin) should receive 
the same value (be in the same bin) after the transformation.
Note: two different input bins can be merged into a single transformed one.

Discrete case  

The resulting values ( ) are defined on the range . In order to have the values in the range 
, they should be scaled and rounded. One possible approach is

The final equalization maps all pixels with value  into the value . In this example, we can see 
how the histogram of an image gets equalized and how the cumulative histogram gets closer 
to the  line, while observing the increasing effects on the contrast.

4. Conclusions  

In the pixel-based image model, operations only take into account the values of the pixels 
(point-wise operators), but neither their position nor the values of their neighbor pixels.

In range transform, a mapping  is defined on the range of values of the input image  onto 
the range of values of the output image .

The mapping expands/contracts segments of the input range depending on the magnitude 
of the derivative of the transform.
If the mapping is not bijective, it cannot be inverted.
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The histogram information is related to the probability of occurrence of a given value in the 
image.

If the histogram of an image is known, specific transforms such as the equalization 
transform can be defined for that image.

1.2.b. Quantization  

1. Introduction  

A very common and useful sample-wise operation is quantization. This operation is involved in 
nearly all digital signal processing.

Scalar quantization maps values from a scalar continuous signal, or a discrete one with very 
high resolution, onto a finite set of values. Truncation and rounding are simple cases of 
quantization. This can be also extended to vector quantization, a very useful tool. The 
difference between an input value and its quantized version is referred to as quantization error.

Storage implies quantization. All kinds of data are to be stored: original data, transformed data, 
computed descriptors... Quantization carries a loss of quality: it's a non-reversible operation. It 
is necessary, then, to define measures of quality to assess the performance of the quantization. 
Commonly, distortion measures  are defined: MSE, SNR, Perceptual measures... The 
assessment will be done in statistical terms with the expected value of this distortion, 

.

Distortion/Quality measures  

The error is . Different measures are defined here:

Mean Square Error (MSE): 

Estimation of expectation.
Mean Absolute Difference (MAD): 

Faster computation, but less sensitive to outliers.
Signal to Noise Ratio (SNR): 

Comparison of estimated signal powers.
Peak Signal to Noise Ratio (PSNR): 

Very used in signal processing.  maximum peak-to-peak value of the 
representation.

2. Uniform quantization  

Quantization  

The input ( ) is a scalar analog value or a digital one with very high resolution. The output ( ) is 
one from N possible values. A quantizer  performs a mapping  The encoder can 
be seen as a selection of a cell in a partition: it classifies  as , where the index links to a 
set of disjoint cells  that forms a partition of the domain of , 

. Then, the decoder can be seen as a selection of a codeword (cell 
representative): it maps an index  to a representative of the cell  as , where 

. Therefore, the quantizer is defined as:

The quantization step introduces losses in the signal representation that have to be assessed. 
These losses are defined as the quantization error, 
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❖ Fixed length encoding: the entropic coding of the source created by the quantized signal 
assuming fixed length codes leads to a code rate of  bits/symbol.

Mid-rise quantization  

Levels  are equispaced with a space of . The thresholds  are midway between 
levels.

The quantization could be expressed as , and the decomposition into 

encoder and decoder would be

Mid-tread quantization  

Levels  are equispaced with a space of , the same as before, but now the values 
around zero have image zero:

The quantization could be expressed as , and the decomposition into 

encoder and decoder would be

Note: using mid-tread quantization, one quantization level is lost, which is negligible when  is 
large, but may be important for small values. Also, mid-tread has a zero output level, while 
mid-rise does not.

Quality measure: Distortion  

af://n145
af://n151
af://n157


The distortion is based on a measure  that quantifies the cost of substituting the actual 
value  by its representative ; for example, the squared error  It's actually 
computed as the expected value of  over the input :

Example: a uniform quantizer with  levels.  presents a uniform pdf, and the distortion error is 
the squared error. Then,

This result is a good approximation for smooth pdf's. We may note this is exactly the MSE of this 
quantizer.

Example: Show that a signal that is quantized with a uniform, scalar quantizer increases its 
quality (measured with the Signal to Noise Ratio) in  with every additional bit used in the 
quantizer. You may assume:

The signal  is always within the interval 
A mid-rise uniform quantizer of  bits is used;
The signal  is uniformly distributed within the quantization step , and
The signal power can be approximated by  where  is a constant value that 
depends on the kind of signal.

3. Non-uniform quantization  

Motivation  

When using uniform quantizers, the quantization error is independent of the signal level; the 
SNR for low level samples is smaller than for high level samples. For some kinds of sources, this 
feature is not desirable. For example, in voice signal, low amplitude samples are perceptually 
important. A logarithm compressor-expander is used, called a compander. Its range varies 
through time, therefore it's called an adaptive quantizer. Its pdf is approximately Laplacian 
(non-uniform quantizer).

Compander  

Compander modeling of non-uniform quantizers: Large amplitudes are first compressed, then 
uniformly quantized, and in the end, expanded again.
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Signals with small amplitude have a small quantization step, while signals with large amplitude 
have a large quantization step. As a result, the SNR adapts to the signal, becoming robust to the 
input signal level.

A-Law and -Law  

There exist different implementations:

Power-Law companding  

 for  and usually 
This is very useful in audio coding for the coefficients of the transformed-domain 
polynomial approximations to the signal transform.

Logarithm Law  

It keeps the ratio  constant.

In Europe and America, different laws (called the A-Law and the -Law, respectively) are 
used for speech samples in telephony.

4. Optimal quantization  

Motivation  

Color image motivation (vector quantization): given an image and a maximum number of 
colors to represent it, a non-uniform quantization can be obtained, leading to the optimum 
palette; the optimum palette represents the image minimizing a distortion measure.

Optimal quantization  

Given a source , characterized by its pdf, define a quantizer  with:

A given number of levels 
Leading to the minimum distortion .

There is no closed-form solution to this problem, but there are some theoretical results and 
some interesting algorithms. Stuart P. Lloyd proved the following necessary conditions:

The encoder  must be optimal given the decoder 
The decoder  must be optimal given the encoder 
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These conditions suggest an iterative algorithm. As it is easy to find the optimal  given , and 
reciprocally it is easy to find the optimal  given , the iterative algorithm should, given an initial 
approximation to one of the two, converge to a (presumably local) minimum. At each step,  
decreases, and as , the algorithm converges. This conditions are not sufficient, 
though, so the algorithm may get caught in local minima of . Some results exist for particular 
pdf's.

Max-Lloyd Algorithm  

Decision levels  and representation values  can be chosen to minimize a given criterion; for 
instance, the MSE. Given a random variable with a known pdf , we look for the  and  
that minimize the MSE for a given number of levels :

Optimization of the MSE map  

Computing the derivatives of  with respect to the variables (  and ) and setting them equal 
to zero, we obtain:

If , then the algorithm has collapsed.

Max-Lloyd Initialization  

❖ Since the Max-Lloyd algorithm does not ensure reaching the optimum, the initialization step is 
very important; the algorithm may get trapped in the local minima closer to the initial 
approximation.

❖ Several strategies have been proposed:

Random selection:  elements from the initial training data.

Regular lattice selection: Product of uniform scalar quantizers.

Product codes: Product derived from optimal scalar quantizers.

Splitting (or LBG algorithm): Sequential optimizations.

Start from a quantization with  representatives.
Split each representative and optimize to obtain .
Iterate until reaching  elements.

The final result depends on the correct initialization of the algorithm.
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5. Conclusions  

Memoryless processes assume that every sample of the process is independent of its neighbor 
samples. The processing of memoryless processes only takes into account the sample values, 
but neither their index nor their neighbor sample values.

Quantization is involved in almost all of the digital signal processing field. Storage implies 
quantization, and quantization implies loss of information and quality: it is a non-reversible 
operation. We have studied uniform quantization (no information about the source), non-
uniform quantization (with no statistical information available) and optimal quantization 
(statistical optimization).

1.2.c. Example: Sample-wise video processing  

1. Introduction  

Many security applications require to prompt an alarm to trigger a recorder or to allow a human 
operator to evaluate the situation. False positives would be accepted.

To detect the presence of a person or object, it is not necessary to get its shape or trajectory, so 
the method can rely on a sample-based model of the image. Usually, it includes computing the 
pixel-to-pixel difference between images.

2. Still background estimation  

In several security applications, due to the setting and camera configuration, the change 
detection can be understood as a problem of still background estimation. A static camera is 
observing a scene that, in principle, does not vary: this is called the background of the scene. A 
large variation can be detected by comparison with the background. This is called the 
foreground object or person (that what is detected).

Still background modelling  

Every pixel of the background is modeled as a random variable; the mean  represents a 
pixel's actual value. The variation with respect to the mean is (mainly) due to the noise introduced 
by the camera.

Camera pixels are usually assumed to be independent and similar. Therefore, the noise 
variables (pixels) are modeled as i.i.d. random variables. The noise probability distribution of 
each pixel is often modeled as a Gaussian , or the empirical distribution (if any) is used. 
The noise image is modeled as a stationary, white, zero-mean stochastic process.

Foreground modelling  

Every pixel of the foreground is modeled as a random variable; no a priori information can be 
assumed on foreground elements. The source of information can be related to intruders or 
even to artifacts produced in the recording of the scene. A uniform distributed pdf is commonly 
assumed.

Foreground/Background distinction  

Once background and foreground have been statistically modeled, changes in the scene are 
detected by a classification procedure. A maximum likelihood classifier is commonly used. It 
minimizes the probability of error in the classification. Every pixel  in a new image  is 
separately analyzed; if the pixel value falls in-between the two thresholds, the pixel is classified 
as background.
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Various realizations of the background are necessary to estimate the mean of each background 
pixel model.

Further problems  

When large areas have to be monitored, cameras may not be static, but may scan a given area. 
Images are then compared against a panoramic view of the scene. The system has to know 
where the camera is pointing to at every instant.

The variations in the background pixel values can be larger than expected because of changes in 
the illumination of the scene. If we have an exterior scene, this typically leads to a non-static 
background. Then, techniques for variable background estimation are used.

3. Variable background estimation: Single Gaussian  

In several security applications, due to the setting and camera configuration, the change 
detection can be understood as a problem of variable background estimation. A static camera is 
observing a scene (background) that may slowly vary (daylight changes, clouds, etc). In addition, 
smaller variations appear due to camera sensor noises.

The background model has to account for those possible slow variations. Every pixel of the 
background is modeled as a random variable. Its mean may slowly change through time, 
following a recursive equation of the likes of  As before, in the 
absence of foreground objects, variations with respect to the mean are due to the noise 
introduced by the camera. Noise samples are assumed to be i.i.d., modeled as Gaussian 

 functions. Its variance may be re-estimated through time as a function of the likes of 

Variable background classification  

Every pixel of the foreground is again modeled as a random variable, without a priori information 
of it. A uniform distribution is assumed.

Once background and foreground are modeled, changes in the scene can be detected by a 
classification process. In a given instant ,
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The process of classification is divided into two steps:

1. Initialization: during a training period, the initial mean and variance values of all Gaussian 
variables ( ) are estimated.

2. Update: the mean and variance of Gaussian variables are updated if the incoming pixels are 
classified as background.

The parameter  establishes the memory of the system:  implies no updating (long 
memory).

4. Variable background estimation: Multiple Gaussians  

In several security applications, systems have to model large variability of the background due to 
switch between various stages of the background. Moreover, new objects that remain in the 
scene for a long period of time have to be assimilated to the background.

5. Conclusions  

1.3. Stochastic Processes  

Characterization  

When we have a set of signals that can be analyzed, as they are the result of the same 
experiment, we model the set of signals as a stochastic process, so that we can analyze them all 
together.

Experiment: we all pronounce the letter 'A'.

 is the stochastic process. (random)
 is the -th realization of the process . (deterministic)

 is a random variable. (random)
 is a constant value. (deterministic)

Then, a stochastic process is an ordered collection of random variables. The order can be related 
to different natures of the signal: time, space... The stochastic process makes reference to the set 
of all possible realizations. In reality, we will have just a small subset of these (in some cases, just 
one realization) and we'll want to obtain good conclusions/measures from this subset.

Applications of processes:

Data synthesis (as in, reproduction of data by a machine)

Speech synthesis, texture synthesis
Modelling for prediction

Modelling for anomaly detection

To characterize stochastic processes we will extend the measures we normally use for random 
variables:

Mean of a process: 

af://n278
af://n280
af://n281
af://n282


Self-correlation (correlation): 

  This measure compares pairs of random variables.

Self-covariance (covariance):

  When . When , then

Cross-correlation:

Cross-covariance:

Example: sinusoid signal with random uniformly-distributed phase on . Then,

We calculate the mean:

the self-correlation:

When 

Stationarity: a process is called stationary when its statistical properties (mean, 
correlation, variance...) don't change with respect to the initial time instant. Statistical 
measures' calculation yields:



For joint stationary processes,

Example: sinusoid with random phase (continued)

We calculated the mean, , and the autocorrelation 
. When flushing in , we can see that 

 only depends on .

Stationary processes with mean and autocorrelation are stationary in a wide sense.

Ergodicity: in a practical case, it is possible we just have some realizations of the studied 
process, or even only one. We want to estimate parameters on these realizations, for 
example the mean of the autocorrelation. We say that a process is ergodic if:

A unique realization of the process assumes all the statistical properties of the process 
in a sufficiently large interval.
We can replace statistical expectancies on samples with time means on the realization.

All ergodic processes are stationary; effectively,

This proves 

Spectral power density  

If we want to study a process in the frequency domain, the Fourier transform of a realization 
does not give enough information. As a consequence, we work with the autocorrelation function 
of the process,

In general (not stationary), we average the autocorrelation in time like this:
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And then, we calculate

This is called the Wiener-Khintchine theorem.

 is called the spectral power density. When working directly with stationary processes, the 
dependency on  is

If  is real and stationary,  is an even function:

The power of the process is

Then,

For this reason, this is called the spectral power density (it is divided by the length; here, this is ).

Linear filtering of processes  

If we have a characterized process  that is put through a known filter, we want to be able to 
characterize the output process :

Mean of :

  Note:  is a linear combination of random variables , so the mean is the mean of 
this variables times the sum of the filter coefficients.
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Cross-correlation:

  Note: if the input is stationary, the output will be as well, even though the characterization 
won't be the same.

Self-correlation at the output:

  This implies that . This is coherent with the positivity of the spectral 
power density, as  by definition and .

Vector notation  

We now suppose we are working with a finite set of data and that we have finite impulse 
response filters of  coefficients.

Examples  

Characterization of memoryless processes  

We use this models to characterize some data. Samples of the process are iid Gaussian of 
parameters , so

Mean:

Self-correlation:
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  As they are iid samples, we have that . If they were independent but not 
identically distributed, we would have .

Departing from the stationary case, we calculate the spectral power density:

 presents identical values throughout all of the frequency spectrum. This is called white 
noise.

Self-correlation matrix:

  For an iid null-mean Gaussian distribution,

Example: filtering a white process (iid, ).

The filter is , and so,

If we now calculate , and as . 

Now the duration of the signal is , and the spectral power density is

The output power is



From a statistics point of view,

If they are iid (in particular, stationary)

We will always assume that, for  big enough, the output of a filter is Gaussian.
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