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Chapter 1

Introduction, Preprocessing and Text
Laws

1.1 Information Retrieval

The origins of information retrieval come from librarians, government agencies, census, etc. Grad-
ually, the information that was contained in all of these sources was digitalized. With the appearance
of the internet and the (closed or private and then world-wide) web, everybody could set up data
on the internet (and hence sometimes information). These are the pillars of the field of information
retrieval: the web and the information it contains.

This field uses techniques from many disciplines: computer architecture, data structures and
algorithmics, networks, logic and discrete mathematics, databases, probabilistic and statistical laws,
AI, or image and sound processing, to name a few. In information retrieval, we may not know where
the information resides, or if it even exists. We do not have a fixed schema, or we may not even know
what information we want to retrieve exactly.

We may use, for example, a couple of search procedures which illustrate what do we need to
specify to set up a formal information retrieval environment.

- Example 1. Hierarchical or taxonomical search: in this search procedure, we have the infor-
mation containers (documents) organized hierarchically, that is, grouped by increasingly general
concepts that contain each other. For example, a giraffe is found in taxonomy (from more to
less general): Animalia ! Chordata ! Mammalia ! Artiodactyla ! Giraffidae ! Giraffa.

- Example 2. Faceted search: in this search procedure, we combine characteristics or properties
of the piece of information we are searching for. For example, “it is black and yellow, and lives
near the equator” may return a number of different animals and plants.

From these two search examples, we can conclude that to define an information retrieval model
(IR model) we need:

- A certain notion of what a document is (an abstraction of a real document).

- To define what is an admissible query (for example, an SQL query, or an HTTP request).
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6 CHAPTER 1. INTRODUCTION, PREPROCESSING AND TEXT LAWS

- A relevance measure of the documents within our reach, that is, a two-argument function for
pairs (query, document) that measures how much information relevant to the query does the
document carry.

To sum this all up, let’s summarize what the information retrieval process is:

1. Offline stage. In this stage, we must crawl, pre-process and index the documents we find.
The goal of this stage is to prepare data structures as to make online query processing fast.
This stage can afford time-consuming computations, and must produce relatively compact data
structures.

2. Online stage. In this stage, we receive and process queries. Then, we must retrieve relevant
documents, rank them, format the answer to the query and return it to the user. This stage
should be very fast (almost instantaneous) and may use additional information from the user,
adverts, etc.

1.2 Pre-processing

Within document pre-processing, we may have the following (non-closed) list of potential actions:

• Parsing: extracting structure from text.

• Tokenization: decomposing character sequences into individual units to be handled.

• Enriching: annotating units with additional information.

• Lemmatization and stemming: reducing words to roots.

1.2.1 Tokenization

Tokenization decomposes text into individual units, for example words, and is similar to lexical
analysis in compilers. Usual problems in tokenization include how to treat hyphens, letter casing,
punctuation symbols, which words can be ignored (stopwords) and how to identify them, etc. Some
words may mean different things when used as a noun or as an adverb, for example. In summary,
tokenization is strongly language-dependent, has to be adapted to the application we want to serve,
is crucial for efficient retrieval and requires many many hard-coding of language structures, rules and
exceptions into retrieval systems. A step beyond tokenization may be Named Entity Recognition.

1.2.2 Enriching

Enriching means that each term is associated to additional information (metadata) that can be
helpful to retrieve more adequate documents for certain queries. For instance, enriching may encode
synonyms, related words, definitions, categories, part-of-speech (POS) tagging (such as adverb, verb,
noun), etc. A step beyond enriching text is Word Sense Disambiguation.
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1.2.3 Lemmatization and stemming

Stemming consists of removing suffixes and prefixes from words to make them relate to each
other in the face of the computer. Lemmatization consists of reducing a word to its linguistic root.
In comparison, stemming is simple and faster than lemmatization, but is often impossible in some
languages due to structure and way of writing. Lemmatization, on the other hand, is much slower
and may require much more processing, but is more accurate and can be used in a wider variety of
languages.

1.3 Math review & Text Statistics

1.3.1 Mathematical reminder

As a reminder, say we have a random variable X and a (random or non-random) parameter Y ,
then Pr(X = x|Y = y) is the probability of X = x conditioned to the event Y = y, and is equal to
Pr(X=x, Y=y)

Pr(Y=y) . It is also important to remember Bayes’ Theorem,

Pr(X = x|Y = y) =
Pr(Y = y|X = x) · Pr(X = x)

Pr(Y = y)
,

as well as the notion of independence between random variables, which is attained by definition
if Pr(X = x, Y = y) = Pr(X = x) · Pr(Y = y), or equivalently if Pr(X = x|Y = y) = Pr(X = x).

The notion of expectation, expected value, or mean is also quite useful, and is defined as (X is
a discrete variable, Y is a continuous one):

E[X] =
∑
x∈X

x · Pr(X = x),

E[Y ] =

∫
Y
y · fY (y) dy.

Its major property as a mathematical operator is its linearity, and additionally, if X and Y are now
independent random variables of any kind (continuous or discrete), then it follows that

E[X · Y ] = E[X] · E[Y ].

In this section we will also make use of some results around the widely studied harmonic series,∑
n≥1

1
n , and its very much related cousin of complex argument, the Riemann Zeta function,

ζ(s) =
∑
n≥1

1

ns
.

It may be useful to remember that when s is restricted to the real numbers R, this series only converges
(in a real-valued function sense) when s > 1.

1.3.2 Text Statistics

The key question in this section is: how are texts constituted? Obviously, some words are very
frequent and some appear less. The basic questions here are:
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- How many different words do we/texts use frequently?

- How much more frequent exactly are frequent words?

In fact, there are very precise empirical laws that govern this behaviour in most human languages.

Heavy tails

In the statistical analysis of natural and artificial phenomena, it is common to observe that the
resulting empirical probability distributions “decrease slowly” compared to Gaussian distributions, or
exponential family distributions in general. This means that the empirical distributions show heavy
tails, which is to say, infrequent objects amount to a substantial probability density. This happens in
phenomena such as:

• Texts (Zipf’s law)

• People names

• Website popularities

• Wealth of individuals, companies, regions, countries, . . .

• Earthquake intensity

Power laws in text

Zipf-Mandelbrot Equation

In text statistics, the frequency of words specifically follows a power law, the Zipf-Mandelbrot
equation, which is governed by corpus-dependent (that is, text- or document-dependent) parameters
a, b, c. The equation tells us that the relative frequency of the n-th most common word is approximately

c
(n+b)a . This was postulated by Zipf in the 1930’s with a = 1, and was further developed in subsequent
studies.

Power laws in a certain document may be detected by trying to estimate the exponent of a
harmonic sequence. To do this,

1. Sort the items by decreasing frequency.

2. Plot them against their position in the sorted sequence, that is, against their rank.

3. Adjust the axes to obtain a log-log plot.

4. Up to this point, there should appear a shape close to a straight line.

- Of course, there will be some rounding to integer absolute frequencies from the power law.

5. With the plot, we can approximate the law’s parameters.

Naturally, longer texts tend to use wider lexicon. However, the longer the text already seen, the lesser
the chances of finding new, not yet processed words.
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Herdan’s or Heaps’ Law

The number of different words is usually described by a polynomial of degree less than 1 on the
text length. Again, like in the Zipf-Mandelbrot case, this is easily seen by using log-log plots.

For a text of length N , say that we tend to find d words. How do we relate these two variables?
If we impose a straight line in a log-log plot, we get

log d = k1 + β · logN =⇒ d = k ·Nβ

The value of β varies with language and type of text. With finite vocabulary, we do not necessarily
have a greater value for β for very large values of N .
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Chapter 2

Information Retrieval Models

We are going to take a look at two different information retrieval models: the boolean model
and the vector model. Both models are bag of words models, which means, that they do not take
into account the order of the words within the document. The boolean document goes further
and also disregards frequency, which means it just takes into account if a word is or is not within a
document. In both models, a document is a collection of pairs (w,m(w)), where m is a measure of the
appearance of the word w, true or false in the boolean model and numeric in the vector model. The
boolean model has boolean queries and exact answers, and can be extended to phrase queries,
which we will also study. Meanwhile, the vector model assigns weights on terms and documents,
and its queries are similarity queries, giving approximate answers and ranking of results.

2.1 Boolean Model of Information Retrieval

Let us first define the notion of document, query and relevance in this model:

- A document is completely defined by the set of terms it contains. For a set of terms T =
{t1, . . . , tT }, a document is then just a subset of T , so we can represent any document D as a
boolean vector of length T , dD = (d1, . . . , dT ), with di = 1 if and only if ti ∈ D.

- A query can be of two kinds:

- Atomic query: this is formed by a single term. The answer is the set of documents that
contain it.

- Compound query: this is formed via boolean operators on a collection of atomic queries.
The boolean operators are AND, OR, NOT, and all the combinations that can be made with
them.

- The relevance of a document for a particular query is defined recursively. For atomic queries,
which are the base case, a document either is relevant (1) or is not relevant at all (0), depending
on whether it contains the term in the query. For compound queries, a document is relevant if
it satisfies the boolean function that the query represents (the combination of boolean operators
that forms the query). So, relevance is binary, hence there is no ranking of documents by
relevance: either a document is relevant or is totally irrelevant.

11



12 CHAPTER 2. INFORMATION RETRIEVAL MODELS

2.1.1 Slightly beyond the boolean model: Phrase Queries

Phrase queries are a type of conjunction query (this is, using the AND operator) that wants to
receive results that maintain adjacency of its components. For example, the query to ask about “black
holes” on an astrophysics database following the boolean model would be black AND holes, but we
want information specifically about the post-stellar objects, so we need to maintain the consecutivity
(adjacency) of words.

In order to be able to respond to this queries effectively, we have many different options to proceed,
which put more effort on the online or the offline stage, depending on the volume of results that we
expect:

- We can run a phrase query just like a conjunction query, and then filter out the results that do
not satisfy the adjacency requirement. This puts the effort in the online stage, and may be slow
if we have a big database with a lot of false positives.

- We can keep dedicated information in the index about adjacency of any two terms. This puts
effort on the offline stage and might get arbitrarily memory-consuming if the database is big
enough.

- We can keep dedicated information in the index about some interesting pairs of adjacent words
that we know from the start will be queried about. This requires prior knowledge that we may
not always have.

2.2 Vector Space Model of Information Retrieval

In this model, as we have already said, the order of words is still irrelevant, but now frequency is
relevant. Not all words are equally important, as they were in the boolean model. Now, for a set of
terms (which we will call a vocabulary from now on) T = {t1, . . . , tT }, a document D is represented
by a vector d = (w1, . . . , wT ) ∈ RT . Hence, wi ∈ R is the weight of word ti in D, but also within all
the database, which we also call corpus, and we will represent by D from now on.

This model, then, conceptually represents the database as a matrix. If the database had |D| = N
documents, the matrix that represents it is an element ofMN×T (R), but this matrix is never computed
for real values of N and T , because it would be very sparse. Its rows are the vector representation of
each document.

2.2.1 How to assign weight to a word: the tf-idf scheme.

To assign a weight to a word, we follow the following two principles: the more frequent the
term t is in document D, the higher its weight should be; but also, if the word is very frequent in
the whole database, its weight should be lower in all the documents it appears, to represent its low
discriminativeness among documents.

So, if we represent D by the vector d = (w1, . . . , wT ) ≡ (wD,1, . . . , wD,T ), then the tf-idf scheme
assigns each weight as a product of two terms:

wD,j = tfD,j · idfj .
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These two terms are called, respectively, the term frequency and the inverse document fre-
quency. They are calculated using the following formulas:

tfD,j =
fD,j

max{fD,k}k=1,...,T
, idfj = log2

N

dfj
,

where fD,j is the absolute frequency of tj within D, dfj is the number of documents that contain tj
within the database, and N is the size of the database (how many documents it contains).

This scheme to calculate weights can be arbitrarily tweaked to fulfill our needs. For example, we
could boost the term frequency of word ti if it appears in the title, in boldface, in the metadata of
a document, etcetera. We could, also, define the inverse document frequency for words that do not
appear in the index. This is a way to account for vocabulary and corpus (database) that changes with
time. For example, Laplace correction: idfj = log2

N+1
dfi+1 .

2.2.2 Queries in the vector model

We now introduce the cosine similarity measure, which will be useful in this model. Given two
documents, with vector representations d, d′ ∈ RT , we want to know how similar they are. In order
to do this, as the name might suggest, we calculate the normalized dot product between them,

sim(d, d′) =
⟨d, d′⟩

∥d∥ · ∥d′∥
=

〈
d

∥d∥
,

d′

∥d′∥

〉
.

As all of our weights are non-negative, the cosine similarity is always non-negative, and is bounded
above by 1 because of the Cauchy-Schwarz inequality. Hence, sim : RT × RT ! [0, 1], and we have
a similarity measure for any two documents from D via composition of the representation and the
similarity functions.

Queries in this model take any form of written language. To process them, we transform them
into representations in RT just as we do with the documents in D, and then we calculate the cosine
similarity of the query with all of our documents, to end up with a vector of similarities which will
help us rank the answer collection by relevance. Hence, we perform the following calculation: given a
query Q ∈ Q (an element of the “query space”) which we represent by the vector q ∈ RT in the same
way that we represent documents in D, the resulting relevance vector r is the result of

r :=
1

∥q∥


1

∥d1∥
0

. . .

0
1

∥dN∥


wD1,1 · · · wD1,T

...
. . .

...
wDN ,1 · · · wDN ,T


wQ,1

...
wQ,T

 .

When we have computed r, we can sort it in decreasing order, and then, we can return the documents
that correspond to the higher values as the answer to Q.

Please note that this is mathematically what we want to do, but implementations may vary and
most importantly, they might be more efficient than multiplying matrices.

2.3 Evaluation of an Information Retrieval System

Let us define A as the set of documents that the system returns as an answer to query Q, and
R as the set of relevant documents, the ones that the user actually wants to see in an answer. Of

https://en.wikipedia.org/wiki/Cauchy%E2%80%93Schwarz_inequality


14 CHAPTER 2. INFORMATION RETRIEVAL MODELS

course, nobody knows R, not even the user making the query. Starting with the boolean model, we
also define the following two metrics for an IR system:

- The recall of the system for a query is

|R ∩ A|
|R|

,

this is, the proportion of relevant documents that have been returned within the answer to the
query.

- The precision of the system for a query is

|R ∩ A|
|A|

this is, the proportion of answers that are actually relevant for the query.

It is very difficult to get both high recall and high precision. Note that this can be translated to
machine learning vocabulary using the confusion matrix of the system:

Answered Answered

Relevant Non-relevant

Reality Relevant tp fn

Reality Non-relevant fp tn

Now, we can identify concepts: |R| = tp + fn, |A| = tp + fp, |R ∩ A| = tp, and hence, recall is
tp

tp+fn , and precision is tp
tp+fp . Usually, tn is huge in IR, so the machine learning accuracy is of little

use here.

This was all for boolean models. Now, what happens when relevance is a real number? What
happens in the vector model? In models where relevance is not boolean, we set a threshold to indicate
what is the lower bound that we want to consider relevant, and then classify all the similarities with
our query either as relevant or as irrelevant. Also, this decision of the threshold provokes a long or
a short answer, as more permissive bounds will return more documents. Long answers usually tend
to exhibit low precision, while short ones tend to exhibit low recall. We usually represent this values
separately as functions of k = |A|, but there exists a single precision and recall curve, similar to the
ROC curve in predictive models, using the x-axis as recall, and the y-axis as precision, which is useful
in defining other metrics:

- AUC, the area under the curve of said plot relative to the best possible area.

- The F -measure or harmonic mean, calculated via

2
1

recall +
1

precision

,

which is closer to the minimum than the arithmetic mean.

- The αF -measure, calculated via
1

α
recall +

1−α
precision

,

which for different values of α gives different importance to either recall or precision.
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To calculate the effectiveness of our system, we could also take into account the documents previously
known by the user, K, and calculate measures of coverage and novelty,

Coverage =
|R ∩ K ∩ A|
|R ∩ K|

, Novelty =
|R ∩ Kc ∩ A|

|R ∩ A|
.

2.4 Relevance Feedback

Now we want to go beyond what the user asked for and what we returned as answers. We want to
re-evaluate the relevance of our answers, and improve our answers to a query, using user’s feedback.
To do that, we follow the user relevance cycle:

1. Get a query Q ∈ Q.

2. Retrieve relevant documents for Q.

3. Show the top k relevant documents to the user.

4. Ask the user to mark them as relevant or irrelevant.

5. Use user’s answers to refine Q.

6. If desired, return to 2.

The tricky part here is how to refine the query and hence, its results. What we actually refine is the
vector q representing the query Q. One way to do this is Rocchio’s rule.

2.4.1 Rocchio’s rule

Given a query’s representation q and a corpus D, split up the corpus D = R ⊔ Rc and build a
new query q′, using

q′ := αq + β
1

|R|
∑
D∈R

dD − γ
1

|Rc|
∑

D∈Rc

dD

with α > β > γ ≥ 0, and with the proper vector normalizations taking place. α represents the degree
of trust placed on the original user’s query, β is the weight of positive information, that is, the weight
that we give to the documents that are relevant by user’s criteria but do not appear within the answer,
and γ is the weight of negative information, that is, the weight that we give to the documents that
are irrelevant by user’s criteria. Usually, we take γ = 0. In practice, we often see a good improvement
of the recall in the first round of the feedback loop, a marginal improvement for the second round,
and almost no improvement beyond this point. In web search, for example, precision is much more
important than recall, so extra computation and user time may be unproductive.

This query improvement procedure that we have seen is a form of query expansion, because
the new query may have non-zero weights where before were zeros. Some other existing techniques
and further information may be found in this paper, in the Wikipedia article, and in Stanford’s NLP
group book on Information Retrieval, particularly in chapter 9.

https://arxiv.org/pdf/1708.00247.pdf
https://en.wikipedia.org/wiki/Query_expansion
https://nlp.stanford.edu/IR-book/pdf/irbookonlinereading.pdf
https://nlp.stanford.edu/IR-book/pdf/irbookonlinereading.pdf
https://nlp.stanford.edu/IR-book/pdf/09expand.pdf
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2.4.2 Pseudo-relevance Feedback

The pseudo-relevance feedback tries not to ask anything from the user, and instead assumes it
has done well on its top k answers. Then, performs the same loop that we defined previously, and
stops, if it does not have an iteration limit, when the top k results do not change over an iteration.

We can use alternative sources of feedback and query refinement, such as link value (number
of clicks), time spent looking/reading an item, a user’s previous history, or other user preferences.
We can even use information about how related are words in the query with other words within our
knowledge to link and refine our query using those.



Chapter 3

Implementation of Information
Retrieval Systems

To answer queries received by our IR system, we could use the following bad algorithm:

input query q;

for every document d in database:

if d matches q:

add id(d) to list L;

output list L (perhaps sorted);

This algorithm scales badly with the database size, and we want a code that is ideally independent of
this quantity. Enter inverted files.

3.1 Inverted files

Usually, a vocabulary, lexicon or dictionary, kept in main memory, maintains all the indexed
terms as a set or map containing a correspondence from a document d ∈ D to a list of words that
are contained in the document, D ! {words}. Inverted files are the inverse correspondence, of sorts,
mapping a word to the documents that contain it, that is, {words} ! D. These files are built at
pre-processing time, not at query time, so we can afford to spend time and computational effort in
their construction.

In practice, inverted files are often implemented with incidence or posting lists. We assign
a document identifier (docid) to each document, and for each term that we are indexing, we save a
posting list, which is a list of docid’s pointing to documents where the term appears, potentially with
additional information. For a medium-sized application and large collections of documents, posting
lists are compressed and stored in disk sorted by docid, while the vocabulary may fit in RAM.

3.2 Implementing the Boolean model

Given an implementation of the storage (e.g. inverted files), the way to process an atomic query
for the boolean model is quite trivial: just look for the posting list of the term, and done. We are

17
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interested in how to process compound queries.

3.2.1 Conjunctive query

We are given a query of the form a AND b. Hence, in layman’s terms, we want to get the posting
lists of both a and b, and intersect them. This operation takes time in O(|L(a)|+ |L(b)|), where L(t)
is the posting list of term t, and of course, it can be improved if both lists are sorted, by performing
a merge-sort like intersection. In python, this would be something like:

def merge_intersect(L1 , L2):

# Suppose both L1 and L2 are sorted

i = 0

j = 0

result = []

while i < len(L1) and j < len(L2):

if L1[i].docid < L2[j].docid:

i += 1

elif L1[i].docid > L2[j].docid:

j += 1

else: # L1[i]. docid == L2[j]. docid

result.append(L1[i])

i += 1

j += 1

return result

3.2.2 Disjunctive query

We are given a query of the form a OR b. Hence, in layman’s terms, we want to get the posting
lists of both a and b, and perform their union. This operation takes time in O(|L(a)| + |L(b)|),
where L(t) is the posting list of term t, and of course, it can be improved if both lists are sorted, by
performing a merge-sort like union. In python, this would be something like:

def merge_union(L1 , L2):

i = 0

j = 0

result = []

while i < len(L1) and j < len(L2):

if L1[i].docid < L2[j].docid:

result.append(L1[i])

i += 1

elif L2[j].docid < L1[i].docid:

result.append(L2[j])

j += 1

else: # equal document identifiers

result.append(L1[i])

i += 1

j += 1

while i < len(L1):

result.append(L1[i])

i += 1

while j < len(L2):

result.append(L2[j])

j += 1

return result
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3.2.3 Exclusive query

We are given a query of the form a BUTNOT b. Hence, in layman’s terms, we want to get the
posting lists of both a and b, and compute L(a) \ L(b), that is, their set difference. This operation
takes time at most in O(|L(a)|+ |L(b)|), where L(t) is the posting list of term t, and of course, it can
be improved if both lists are sorted. In python, this would be something like:

def merge_set_difference(L1 , L2):

i = 0

j = 0

result = []

while i < len(L1):

if L1[i].docid < L2[j].docid:

result.append(L1[i])

i += 1

elif L1[i].docid > L2[j].docid:

if j < len(L2)-1:

j += 1

else:

result.append(L1[i])

i += 1

else: # equal docid’s, which is what we don’t want

i += 1

if j < len(L2)-1:

j += 1

return result

3.3 Query optimization

We now want to deal with queries in the boolean model and their speed. Specifically, we want to
address how to optimize queries to run in the least time possible. To do this, we have, among others,
the following options:

- We could rewrite the query using boolean algebra.

- We could choose other algorithms for intersection and union.

- We could use more sophisticated data structures (computed offline).

3.3.1 Query rewriting

What is the most efficient way to compute the result of a conjunctive query like a AND b AND c?
We have three equivalent ways of expressing the query that could be useful, namely (a AND b) AND c

and its variants. And a disjunctive query like (a AND b) OR (a AND c)? We also have an equivalent
form which maybe is more efficient, a AND (b OR c). This equivalent forms are called execution
plans in the IR context, and their cost depends on the sizes of the atomic results as well as the sizes
of intermediate lists. The worst case scenario sizes for intersection and union are the following:

|L1 ∩ L2| ≤ min (|L1| , |L2|), |L1 ∪ L2| ≤ |L1|+ |L2| − |L1 ∩ L2| ≤ |L1|+ |L2|

For example, let’s compute the cost of a AND b AND c using two different execution plans, for sizes
|La| = 1000, |Lb| = 2000, |Lc| = 300. The minimum number of comparisons that we have to compute
if using sequential scanning is, naturally, |La|+ |Lb|+ |Lc| = 3300.
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- Execution plan: (a AND b) AND c. The instructions are:

Instruction Comparisons Result ≤
1. La∩b = intersect(La, Lb) 1000 + 2000 = 3000 1000

2. Lres = intersect(La∩b, Lc) 1000 + 300 = 1300 300

Total comparisons 3000 + 1300 = 4300 −

- Execution plan: (a AND c) AND b. The instructions are:

Instruction Comparisons Result ≤
1. La∩c = intersect(La, Lc) 1000 + 300 = 1300 300

2. Lres = intersect(La∩c, Lb) 300 + 2000 = 2300 300

Total comparisons 1300 + 2300 = 3600 < 4300 −

From these, we derive the following heuristic for AND-only queries: intersections must happen from
shortest list of results to longest list of results, in order to minimize the number of comparisons.

Let’s compute another example, this time with the query a AND (b OR c), with sizes |La| =
300, |Lb| = 4000, |Lc| = 5000. The minimum number of comparisons if we perform a sequential scan
is, again, the sum of the sizes of the lists, that is, 9300. This first execution plan has instructions:

Instruction Comparisons Result ≤
1. Lb∪c = union(Lb, Lc) 4000 + 5000 = 9000 9000

2. Lres = intersect(La, Lb∪c) 9000 + 300 = 9300 300

Total comparisons 9000 + 9300 = 18300 −

We could try with a different execution plan for the same query, namely (a AND b) OR (a AND c).
The instructions would be:

Instruction Comparisons Result ≤
1. La∩b = intersect(La, Lb) 300 + 4000 = 4300 300

2. La∩c = intersect(La, Lc) 300 + 5000 = 5300 300

3. Lres = union(La∩b, La∩c) 300 + 300 = 600 600

Total comparisons 4300 + 5300 + 600 = 9900 < 18300 −

As we can observe, the combinatorics may get very complicated with more convoluted queries.
One can find more information on general boolean query optimization and boolean retrieval in Stan-
ford’s NLP group book on IR, chapter 1, in this PhD thesis on Boolean query optimization, and also
in this article reviewing boolean query optimization using both normal as well as fuzzy logic. For
tangential (but interesting!) information on other types of query optimization, see this article on
genetic algorithms to optimize general query systems.

3.3.2 Using other algorithms

To optimize the processing of a query, we could implement other algorithms. For example, to
achieve intersection in sub-linear time, we could exploit the binary search algorithm in a sorted list,
which we know is logarithmic in the input list size. To do this, given two lists, we take the shortest
one, and while we linearly scan this one, we search every docid in the longest list to find coincidences.

https://nlp.stanford.edu/IR-book/pdf/01bool.pdf
https://nlp.stanford.edu/IR-book/pdf/01bool.pdf
https://madoc.bib.uni-mannheim.de/44275/1/thesis.pdf
https://www.researchgate.net/publication/220608848_Optimization_of_Boolean_Queries_in_Information_Retrieval_Systems_Using_Genetic_Algorithms_-_Genetic_Programming_and_Fuzzy_Logic
https://hal.archives-ouvertes.fr/hal-00359563/document
https://hal.archives-ouvertes.fr/hal-00359563/document
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Using this algorithm, the time would be O(|Lmin| · log |Lmax|). When |Lmin| ≪ |Lmax|, it holds that
|Lmin| · log |Lmax| < |Lmin|+ |Lmax|.

3.3.3 Using sophisticated data structures

We could add to some elements in the posting list a pointer to a subsequent element in the list.
Using this, we could check if inequality comparisons between two elements are going to hold for a
lot of elements, and skip some segments, hence avoiding some comparisons and reducing the general
algorithm cost. The optimal number and length of pointers, for example when working with posting
lists in RAM, is

√
|L| pointers, pointing to

√
|L| elements after.

3.4 Implementing the Vector model

Now we want to retrieve documents from a system in which the vector model is implemented.
Given a fixed similarity-measuring function sim(d, q) between a document and a query, we want to
retrieve (1) the documents which have a similarity with our query that is above a certain threshold
simmin, (2) the top r documents according to our measure, or (3) all documents together with their
similarity measure with the query, all sorted by decreasing similarity with our query q. Our system
must react very fast, and with a reasonable memory expense.

An obvious (non-)solution is the following:

for doc in D:

sim_q[doc] = 0

compute_vector(doc)

for word in query: # q is in vector form already

sim_q[d] += tf[word , doc]*idf[word]

sim_q /= norm(doc)*norm(query)

sort results by similarity

The inverse document frequency terms and the norm of each document can be precomputed and
stored in the index, but the norm of the query has to be computed online. This is too inefficient for
a large D. To improve this, we notice some facts:

- Most documents only include a small proportion of the considered terms.

- Queries are usually human-sized, this is, they have a small number of different terms.

- Only a very small proportion of the documents will be revelant.

- We have the inverted file available.

Following this facts, we use the inverted file to make a faster algorithm:

sim_q = {}

for word in query:

L = posting_list[word] # comes from inverted file

for doc in L:

if not doc in sim_q:

sim_q[doc] = 0

sim_q[doc] += tf[word , doc]*idf[word]

for doc in sim_q: # for each document that we have visited
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sim_q[doc] /= norm(doc)*norm(query)

sort results by similarity

After a few outer loops, instead of having completely computed sim q(d) for some of the documents
d ∈ D, we have partially computed sim q(d) for all the documents. Hence, this is similar to a
column-wise scan of the document-term matrix, instead of a row-wise scan.

3.5 Index compression

We now want to talk about compressing the index of an IR system. But why would we want
to do that? Well, that is because a large part of the query-answering time is spent bringing posting
lists from disk to RAM, hence, we want to minimize the amount of bits that we have to transfer from
one to the other. The index compression schemes exploit some properties that we have already seen
and used to our advantage: the docids are usually sorted in increasing order, the frequencies of a word
in a document are usually very small numbers, and so, we can do better than using, for example, 32
bits for each frequency value (the memory used by an int).

Posting lists typically have small values for frequency as we stated, so we can compress those values
using self-delimiting codes for frequency. As document ids are sorted, we can also compress the
docids using Gap compression and Elias-Gamma codes.

3.5.1 Frequency compression

We will use unary self-delimiting codes to indicate the values of a frequency list. We let the
symbol 0 be the separator between values of the list, and replace the last 1 in a value with a 0. Hence,
a frequency list takes the aspect of 110 10 0 1110 0 11110 (for the list [3, 2, 1, 4, 1, 5]). This obviously
has unique decoding, and no prefix of a code is a code.

3.5.2 Docid compression

Instead of compressing the id’s themselves, we will compress the gaps between two consecutive
id’s, this is, we will compress the vector [(id1, f1), (id2 − id1, f2), . . . , (idk − idk−1, fk)]. If gaps are
small, we will use very few unary digits in total. But, as gaps are not biased towards 1, we need to
use a variable-length self-delimiting binary code. Enter Elias-Gamma codes.

Elias-Gamma codes

The idea of Elias-Gamma codes (developed by Peter Elias in 1975) adhere to the following scheme:
first say how long x is in binary, and then send x in binary. The following Python code does the trick:

def elias_gamma(n: int):

post = translate_into_binary(n)

res = ’0’*(len(post)-1)+post

return res

It is quite obvious that Elias-Gamma is a self-delimiting code: once you start reading a sequence of
elements encoded in Elias-Gamma, you read a number of zeros, say z, and afterwards you decode the
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following z + 1 bits as a binary encoded integer. Assymptotically, this code has approximate length
2 log2 x; one log comes from the binary encoding, and another one from the length.

An easy alternative to Elias-Gamma codes is variable byte codes. These make use of the first bit
in a group (be it a byte, 8 bits, or a nibble, 4 bits) to indicate whether this is the last group of bits
that belong to the encoded number. If the first bit is 0, then the group of bits is the last one, else it
is a 1 and the group of bits is a continuation byte/nibble.

There also exist improvements on Elias-Gamma, namely Elias-Delta and Elias-Omega codes.
These encode recursively the prefixes of Elias-Gamma codes, in order to assymptotically decrease the
number of bits used to encode a number. One can find more information on them in the partial exam
from the Fall 2021 course of CAI, and on the internet.

3.6 Getting fast the top r results

The last line of the vector model implementation and response to a query was

sort results by similarity

This, as we know from previous courses, can be done in quasi-linear time R logR, being and R the
number of documents that have a similarity over the minimum stipulated. We will usually want to
present only the top r documents, with r ≪ R, really fast. To do this, we use a minheap. Let
L = [L1, . . . , LR] in any (possibly random) order. Then, the algorithm works as follows:

put [d_1, ..., d_R] in a minheap

for i in range(r+1, R+1):

d_top = minheap.top()

min_val = sim(d_top, q)

if sim(d_i, q) > min_val:

replace the smallest element in the heap with d_i

re-heapify the minheap

One can see that after any iteration of the loop, the heap will contain the top r documents among
the first i. A not-so-obvious claim is the fact that, if the similarities in L are randomly ordered, the
expected running time of the algorithm is O

(
R+ r · log r · log

(
R
r

))
. This can be decomposed as the

sum of the following terms:

- Time to insert r elements in the heap, O(r).

- Expected value of the time to process di:

pi := Pr(di enters the heap) = Pr(di is among the largest in d1, . . . , di) =
r

i
,

E[time to process di] = pi · O(log r) + (1− pi) · O(1)
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Now, one can see that the expected running time will be

E[total running time] = O(r) +
R∑

i=r+1

[
piO(log r) + (1− pi)O(1)

]

= O(r) +
R∑

i=r+1

[
r

i
O(log r) +

i− r

i
O(1)

]
= · · · (using that the harmonic series H(n) ≈ log n)

= O(r) +O(r log r(logR− log r)) +O(R− r)

= O(R) +O
(
r log r log

(
R

r

))
For r ≪ R, we have gotten from O(R logR) to O(R).

3.7 Creating the index

Now we want to know, given a document collection D, how do we build the inverted file, exactly?
In Python, we can build it in RAM like this:

F = {}

for doc in D:

d = docid(doc)

for word in doc:

if word not in F:

F[word] = {}

if d not in F[word]:

F[word][d] = 0

F[word][d] += 1

To handle problems with disk latency and throughput, and writing the RAM inverted file to disk,
refer to the course material. Just bear in mind that we have a more efficient way to write an inverted
index to disk, doing it by chunks: we create the inverted file for a chunk of the document collection,
until the RAM is full. Then, we transfer each list in RAM to the end of the corresponding list in the
disk, clear the RAM index, and repeat until we have processed all documents. A RAMful of index is
sometimes called a barrel, and many barrels can be built parallely using a cluster.



Chapter 4

Searching the web. Pagerank.

The web is huge. Like really, really big. It had over 60 billion indexed pages in the happy
times of 2019. This means that content, that is, text alone, cannot discriminate between two indexed
documents, as most queries would return millions of results of pages with high similarity. Hence,
we have to do something different if we are to retrieve any useful information. We will exploit the
structure of the web as a graph to calculate this relevance measures and assess the usefulness of each
page (which will be a node).

4.1 Crawling

A crawler is a piece of software that crawls the web, this is, it systematically explores the
web and collects information and documents. The crawling algorithm will be similar to the following:

q = queue()

add "seed" URLs to q

while q is not empty:

u = choose a URL from q

fetch the page at u and parse it

discard u or add it to the database

add (new) URLs that are in u to q

Crawling is, conceptually, a graph traversal process, and thus, it may be a BFS/DFS or another
traversal algorithm, maybe focused (or not) on a certain topic or a list of keywords, prioritizing
certain pages, etc. The pages in the database must be refreshed periodically, as the web changes, and
pages with higher interest should be refreshed more often. We would like a crawling algorithm (a
crawler) to be efficient, robust and polite.

- Crawling efficiency: We can make crawling efficient by sharing computation across several
machines, distributing the effort. If we do this, it should be scalable (have the ability to add
more machines to the process). Distributed computation has the backlash of connection latency
between machines, but it allows for many open simultaneous connections, so the “frontier” of
exploration advances faster. We should also try to keep all the threads busy and not waste
computational capacity. Even though we can try all of these approaches, there tends to be a
bottleneck in DNS servers. During the process, some pages may be discarded, for example
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duplicates (the fast detection of which is a problem in itself), irrelevant pages for the crawler’s
goals, or spam pages.

- Crawling robustness: Crawlers must be reliable and not remain on very common dead URLs
for much time (using timeout mechanisms). Also, the crawler has to avoid syntactically
incorrect pages, spider traps (special sub-networks that intentionally or unintentionally keep a
crawler trapped), webspam, and mirror sites.

- Crawling politeness: Crawlers should not hit the same server too often, to avoid wasting too
much of its bandwidth. We should, hence, make the crawler wait for a response to a request,
but not much to avoid dead URLs. An important thing to respect with crawlers is the robot
exclusion standard, the /robots.txt file of a website. This file is a list of agent exclusions
that the website administrator would like to be respected, like:

User-agent: *

Disallow: /cgi-bin/

Disallow: /images/

Disallow: /tmp/

Disallow: /private/

4.2 Architecture of a web search system

In this section, we will briefly review how Google worked in 1998. This can be followed up with
this paper by Sergey Brin and Lawrence Page, the inventors of the posterior PageRank algorithm.

Figure 4.1: Architecture of the Google system in 1998 (origin: slides from the course material made
by Marta Arias).

https://static.googleusercontent.com/media/research.google.com/en//pubs/archive/33026.pdf
http://infolab.stanford.edu/~backrub/google.html
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The main components of the Google web search system back then were:

- URL store: the URLs that are awaiting exploration.

- Document repository: the total set of documents explored, compressed.

- Indexer: process that parses pages, and separates website content into text, links and essential
text information, which go respectively to the Forward Index, the Anchor List and the
Document Index.

A component we are much interested in is the inverter (sorter): it transforms the forward index to
the inverted index. The first idea for this process is the naive implementation, i.e.,

for doc in documents:

for term in doc:

docids[term].append(docid(doc))

This has poor locality and requires many disk accesses, hence it is too slow. A slightly better imple-
mentation would be the following:

create in disk an empty inverted file ID

create in RAM an empty index IR

for doc in documents:

for term in doc:

IR[term].append(docid(doc))

if RAM is FULL:

for t in IR:

merge(ID[term], IR[term], inplace=True)

Merging previously sorted lists has linear execution time. This algorithm has much better locality
than the previous implementation, with much fewer disk accesses. On top of that, this algorithm can
be executed concurrently on different sets of documents and even on different machines, with just one
merger, making it a massively parallel algorithm. In short, the indexer fragments the forward index
into barrels of main memory size, these are separately inverted in main memory, and then the inverted
barrels are merged to the inverted index.

4.3 Pagerank

To kick off this section, we start by talking about meaning of hyperlinks. When a page A links
to a page B, this means that A’s author thinks that B’s contents are interesting for their content.
Hence, a link from A to B adds to B’s reputation. But not all links (not all pages A) give the same
importance to their destination (page B). To formalize this concept mathematically, we will use our
intuition: a page is important if it is pointed by other important pages. This definition is
circular, but this is not a problem, because of how we will set this up mathematically.

4.3.1 Definition and formulation

We will treat the web as a directed graph G = (V,E). V = {1, . . . , n} are the nodes, that is, the
pages in the web, and (i, j) ∈ E if page i points to page j. For each page i in V , we define its prestige
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pi (its pagerank). This prestige is passed equally to all the nodes to which it points. Mathematically,
we want the vector of pageranks (pi)i∈V to satisfy:∑

i∈V
pi = 1, pi =

∑
(j,i)∈E

pj
outdeg(j)

,

where outdeg(j) is the out-degree of node j, this is, |{i : (j, i) ∈ E}|. Hence, we get a set of some linear
equations to solve. We can easily put this into a matrix and reformulate in terms of linear algebra:
let M be a matrix, with:

Mij =

{
1

outdeg(i) , if (i, j) ∈ E,

0, otherwise.

Then, it is clear that if p = (pi)i∈V is the vector of pageranks, it is the solution of MT p = p, that is,
an eigenvector of MT of eigenvalue 1.

Solving this kind of system usually requires O(n3) time, where n is the dimension of M . This
is unfeasible for the web size. Hence, we will try to devise a method for solving p = MT p faster.
Particularly, we will use the power method for fixed point equations. This consists of choosing a
certain initial value x(0) ∈ Rn, and then repeatedly assign x(t) := F (x(t − 1)) until some notion of
“convergence” is satisfied. In our context, F would be the linear map associated to MT . To be able
to use this method, we have to determine some things first, namely:

- That the method converges eventually.

- That the method converges to a unique solution.

- The convergence speed (the number of iterations it will take).

- The convergence independence of the initial point x(0).

The thing is, there are some matrices M that can make all the properties fail. To make sure that we
can handle these matrices, we have to do some work. Particularly, we will use some theory of Markov
chains and stochastic matrices.

Definition 4.3.1 (Stochastic matrix). A square matrix A is stochastic (column-stochastic) if each
row (column) adds up to 1.

Definition 4.3.2 (Positive matrix/vector). A matrix A (vector v) is positive if all of its entries are
positive.

Theorem 4.3.3 (Perron-Frobenius). A positive matrix A has a real eigenvalue λ1 such that:

1. λ1 > 0.

2. λ1 > |λ| for any other eigenvalue λ (λ1 is said to be dominant).

3. λ1 has algebraic multiplicity 1 (this means, the eigenspace of eigenvalue λ1 has dimension 1, or
that λ1 is simple).

4. The eigenspace of eigenvalue λ1 contains positive vectors.

5. None of the other eigenspaces of A contain positive vectors.
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A theorem that follows from the Perron-Frobenius theorem states that, if A is column-stochastic
and positive, then 1 is its greatest eigenvalue (in absolute value), and it has exactly 1 positive eigen-
vector of eigenvalue 1 that adds up to 1, called a stationary vector. We specify column-stochastic here
because we will use this for our application of the theorem. Also, because if A is row-stochastic, its
stationary eigenspace is trivially generated by 1 = [1, . . . , 1]T ∈ Rn.

In our case, maybe M is not a row-stochastic matrix. Some rows could contain all 0, and so add
up to 0, hence making MT fail the conditions of our theorem. To avoid this kind of situation, we will
fix the zero-sum rows. We say the same in three different ways:

- Redistribute the pagerank of a sink to all nodes (including itself).

- If outdeg(i) = 0, add all possible edges (i, j) to E.

- If a row in M is all 0, replace it with 1
n1.

Now, M would be row-stochastic, so MT would be column-stochastic, hence if it were positive it
would have a unique stationary distribution p. But that can still fail. Some elements in the matrix
can still be null, signifying no connection between two nodes, and this can lead to an unconnected
network, which could have infinitely many solutions. There would still be an eigenspace of eigenvalue
1, but we know nothing about its dimension. If it were of dimension 2, for example, we would have
p1 and p2 as generators of the eigenspace, which would be normalized to add up to 1, then combined
such as (1 − α)p1 + αp2, which would add up to 1 and be positive for any α ∈ [0, 1]. So, we have to
ensure that the network is strongly connected, this is, we can go from any node to any other node.
In terms of the matrix M , this means making it an irreducible matrix. Now, for the last problem
that could arise, let’s take a look at the following example:

Example 4.3.1 (Periodic network). We have the following network:

Its matrix M is

M =


0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0


Then, it is clear that whichever way we choose the initial point x(0), the probabilities will just go from a
node to its only out-neighbor, showing a periodic behaviour. Even though we know that the solution
to the pagerank problem of this network should be [14 ,

1
4 ,

1
4 ,

1
4 ]

T , if we start with x(0) = [1, 0, 0, 0]T , for
example, the power method (x(t) := MTx(t − 1)) will produce the same distribution, shifted every
time, periodically.

If the network was aperiodic, we would have no problem when starting with any initial point
x(0), as all of the starting points would lead to the same fixed point. Let us define what aperiodicity
is:
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Definition 4.3.4 (Aperiodicity). A graph is aperiodic if there is no integer k > 1 that divides the
length of every cycle. A square matrix is aperiodic if, when building the graph it represents, G(M),
we get an aperiodic graph.

Remark (Graph of a matrix). It should be noted that given a square matrix M , one can build a
weighted and directed graph, G(M) = (V,M), by setting V = {1, . . . , n}, with n being the dimension
of M .

A way to avert all three problems we mentioned at once is to add a non-null weight to all entries
of the matrix M , while keeping the stochastic structure of the matrix. This ensures aperiodicity as
we are making sure that there are self-connections, and hence cycles of length 1 in the graph. We
could add these non-null weights via convex combination of M with another matrix with non-zero
entries, for example J = 11T .

Summarizing, to ensure that we have a stochastic, irreducible and aperiodic matrix at the same
time, we can simply use the following formula,

G := λM + (1− λ)
1

n
11T ,

for a λ ∈ [0, 1). This keeps the stochasticity while making G an irreducible and aperiodic matrix.

As we now have a stochastic and irreducible matrix, we can apply the theorem following Perron-
Frobenius’ Theorem to state that G has 1 as an eigenvalue, that the dimension of the 1-
eigenspace is 1, and hence that we have a unique positive eigenvector of G that adds up to
1. Matrix G is known as the Pagerank matrix or the Google matrix.

We have also avoided convergence problems, as we know from numeric analysis and Markov chain
theory that when dealing with this kind of matrices, we have the inequality

∥p(t)− p∗∥ ≤ |λ2| · ∥p(t− 1)− p∗∥ .

Hence, by repeated application of the inequality, we have that

∥p(t)− p∗∥ ≤ |λ2|t · ∥p(0)− p∗∥ .

You can check this expository paper and this other one to check how to prove this fact1. Also, as a
bonus fact, we have that |λ2(G)|, the second eigenvalue of the Google matrix G, is ≤ λ. This parameter
makes sure that we have fast and unique convergence, but it does not appear in the definition of
pagerank. Hence, we have that the closer λ is to 1, the closer the solution of GT q = q is to the true
pagerank vector, and the closer λ is to 0, the closer the solution is to the uniform distribution.

We can also interpret the PageRank solution as the limiting distribution of a random walk model
on a graph, which is a Markov process.

4.4 Topic-sensitive Pagerank

1You can also check this book chapter on Markov chains and convergence.

https://math.uchicago.edu/~may/REU2017/REUPapers/Freedman.pdf
https://www2.isye.gatech.edu/~nemirovs/MarkovChainWithYura
https://ieeexplore.ieee.org/abstract/document/1208999
https://link.springer.com/content/pdf/10.1007%2F978-1-4471-5361-0_18.pdf
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